A model for color screening in a QCD plasma: the roles of thermal gluons and of confinement

Theoretical Physics


The study of the screening in the \(q\bar{q}\) plasma, in a model which takes into account only static interactions, is continued with the introduction of two new dynamical elements: the presence of thermal gluons and a phenomenological description of the confinement. In the first case the qq correlation and the \(q\bar{q}\) correlation are similar to each other and also similar to the correlation in the absence of gluons: the decay with the distance deviates slightly from a standard exponential decay. In the second case the two-body confining potential gives rise to correlation functions oscillating with the distance, so that only the total correlation, i.e. the space integral, has a more transparent interpretation; moreover, the qq correlations and the \(q\bar{q}\) correlations show very definite differences.


Color Field Theory Correlation Function Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Calucci, Eur. Phys. J. C 36, 221 (2004)CrossRefADSGoogle Scholar
  2. 2.
    L.D. Landau, E.M. Lifshits, Statistical Mechanics (Pergamon, Oxford, 1969), Chap. 7Google Scholar
  3. 3.
    E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Dane, T.M. Yan, Phys. Rev. Lett. 34, 369 (1975)CrossRefADSGoogle Scholar
  4. 4.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996)Google Scholar
  5. 5.
    G.P. Lepage, J. Comput. Phys. 27, 192 (1978)CrossRefMATHGoogle Scholar
  6. 6.
    G. Altarelli, Annu. Rev. Nucl. Part. Sci. 39, 357 (1989)CrossRefADSGoogle Scholar
  7. 7.
    G. ’t Hooft, Nucl. Phys. B Proc. Suppl. 121, 333 (2003)CrossRefADSMATHGoogle Scholar
  8. 8.
    M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, D.B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993); R.L. Jaffe, Phys. Rep. 409, 1 (2005)CrossRefADSGoogle Scholar
  9. 9.
    F. Wilczek, Diquark as inspiration and as object [hep-ph/0409168]Google Scholar
  10. 10.
    G. Calucci, Europhys. Lett. 70, 77 (2005); erratum, Europhys. Lett. 70, 562 (2005)CrossRefGoogle Scholar
  11. 11.
    O. Philipsen, What mediates the longest correlation length in the QCD plasma? hep-ph/0301128; O. Philipsen, Phys. Lett. B 521, 273 (2001)CrossRefADSMATHGoogle Scholar
  12. 12.
    J. Kogut, L. Susskind, Phys. Rev. D 11, 395 (1975)CrossRefADSGoogle Scholar
  13. 13.
    F. Karsch, E. Laerman, Quark Gluon Plasma III, ed. by R.C. Hwa, X.N. Wang (World Scientific, River Edge (USA), 2004), p. 101Google Scholar
  14. 14.
    M.C. Birse, C.W. Kao, G.C. Nayak, Phys. Lett. B 570, 171 (2003)CrossRefADSMATHGoogle Scholar
  15. 15.
    P. Romatschke, M. Strickland, Phys. Rev. D 68, 36004 (2003); P. Romatschke, M. Strickland, Phys. Rev. D 70, 116006, (2004)CrossRefADSGoogle Scholar
  16. 16.
    P. Arnold, J. Lenaghan, Phys. Rev. D 70, 114007 (2004)CrossRefADSGoogle Scholar
  17. 17.
    S. Mrowczynski, A. Rebhan, M. Strickland, Phys. Rev. D 70, 025004 (2004)CrossRefADSGoogle Scholar
  18. 18.
    E.V. Shuryak, Nucl. Phys. B Suppl. 141, 107 (2005); E.V. Shuryak, J. Phys. G 30, S1221 (2004)CrossRefADSGoogle Scholar
  19. 19.
    E. Leader, E. Predazzi, An Introduction to Gauge Theories and Modern Particle Physics (Cambridge University Press, Cambridge, 1996), Appendix 2Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Dipartimento di Fisica TeoricaUniversità di TriesteTriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly

Personalised recommendations