Skip to main content
Log in

Evaluating massive planar two-loop tensor vertex integrals

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

Using the parallel/orthogonal space method, we calculate the planar two-loop three-point diagram and two rotated reduced planar two-loop three-point diagrams. Together with the crossed topology, these diagrams are the most complicated ones in the two-loop corrections necessary, for instance, for the decay of the Z0 boson. Instead of calculating particular decay processes, we present a new algorithm which allows us to perform arbitrary next-to-next-to-leading order (NNLO) calculations for massive planar two-loop vertex functions in the general mass case. All integration steps up to the last two are performed analytically and will be implemented under xloops as part of the Mainz xloops-GiNaC project. The last two integrations are done numerically using methods like VEGAS and Divonne. Thresholds originating from Landau singularities are found and discussed in detail. In order to demonstrate the numerical stability of our methods we consider particular Feynman integrals which contribute to different physical processes. Our results can be generalized to the case of the crossed topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Hollik, G. Duckeck, Electroweak Precision Tests at LEP (Springer, Berlin, 2000)

  2. D.Y. Bardin, J. Phys. G 29, 75 (2003)

    Article  ADS  Google Scholar 

  3. W. Hollik et al., Acta Phys. Polon. B 35, 2533 (2004)

    Google Scholar 

  4. LEP Collaboration, Rep. No. CERN-PH-EP-2005-041 [arXiv:hep-ex/0509008], submitted to Phys. Rep.

  5. ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., Rep. No. DESY-TESLA-2001-23 [arXiv:hep-ph/0106315]

  6. S. Heinemeyer, G. Weiglein, Electroweak precision tests with GigaZ. In Batavia 2000, Physics and Experiments with Future Linear e+e- Colliders. Rep. No. LC-TH-2001-001, pp. 511–514 [arXiv:hep-ph/0012364]

  7. G. Weiglein, Eur. Phys. J. C 33, S630 (2004)

  8. LHC/LC Study Group, G. Weiglein et al., Rep. No. SLAC-PUB-10764 [arXiv:hep-ph/0410364]

  9. S. Heinemeyer, Rep. No. CERN-PH-TH-2004-159 [arXiv:hep-ph/0408269]

  10. D. Kreimer, Phys. Lett. B 292, 341 (1992)

    Article  ADS  Google Scholar 

  11. N.I. Usyukina, A.I. Davydychev, Phys. Lett. B 348, 503 (1995)

    Article  ADS  Google Scholar 

  12. A.I. Davydychev, J.B. Tausk, Nucl. Phys. B 465, 507 (1996)

    Article  ADS  Google Scholar 

  13. J. Fujimoto, Y. Shimizu, K. Kato, T. Kaneko, Int. J. Mod. Phys. C 6, 525 (1995)

    Article  ADS  Google Scholar 

  14. A.A. Pivovarov, Phys. At. Nucl. 63, 1646 (2000); Yad. Fiz. 63N9, 1734 (2000)

    Article  Google Scholar 

  15. K.G. Chetyrkin, R. Harlander, J.H. Kühn, M. Steinhauser, Nucl. Instrum. Methods A 389, 354 (1997)

    Article  ADS  Google Scholar 

  16. S. Groote, J.G. Körner, A.A. Pivovarov, Phys. Lett. B 443, 269 (1998); Nucl. Phys. B 542, 515 (1999); Eur. Phys. J. C 11, 279 (1999); Phys. Rev. D 60, 061701 (1999); Phys. Rev. D 61, 071501 (2000); Phys. Rev. D 65, 036001 (2002); Eur. Phys. J. C 36, 471 (2004); Rep. No. MZ-TH-05-08 [arXiv:hep-ph/0506286]; S. Groote, A.A. Pivovarov, Nucl. Phys. B 580, 459 (2000)

    Article  ADS  Google Scholar 

  17. A. Ghinculov, Y.P. Yao, Nucl. Phys. B 516, 385 (1998); Phys. Rev. D 63, 054510 (2001)

    Article  ADS  MATH  Google Scholar 

  18. A.I. Davydychev, V.A. Smirnov, Nucl. Instrum. Methods A 502, 621 (2003)

    Article  ADS  Google Scholar 

  19. U. Aglietti, R. Bonciani, Nucl. Phys. B 668, 3 (2003); Nucl. Phys. B 698, 277 (2004)

    Article  ADS  MATH  Google Scholar 

  20. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi, Nucl. Phys. B 706, 245 (2005); Nucl. Phys. B 712, 229 (2005)

    Article  ADS  Google Scholar 

  21. R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 661, 289 (2003); Erratum Nucl. Phys. B 702, 359 (2004); Nucl. Phys. B 676, 399 (2004); Nucl. Phys. B 690, 138 (2004); R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, J.J. van der Bij, Nucl. Phys. B 701, 121 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  22. M. Caffo, H. Czyż, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 422 (2003)

    Article  ADS  MATH  Google Scholar 

  23. P. Mastrolia, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 412 (2003)

    Article  ADS  MATH  Google Scholar 

  24. S. Bauberger, F.A. Berends, M. Böhm, M. Buza, Nucl. Phys. B 434, 383 (1995); S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. 37B, 95 (1994)

    Article  ADS  Google Scholar 

  25. P. Post, Ph.D. thesis, Mainz University, 1997

  26. P. Post, J.B. Tausk, Mod. Phys. Lett. A 11, 2115 (1996)

    Article  ADS  Google Scholar 

  27. H.S. Do, Ph.D. thesis, Mainz University, 2003

  28. G. Passarino, Nucl. Phys. B 619, 257 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. A. Ferroglia, M. Passera, G. Passarino, S. Uccirati, Nucl. Phys. B 680, 199 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. S. Actis, A. Ferroglia, G. Passarino, M. Passera, S. Uccirati, Nucl. Phys. B 703, 3 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. W. Hollik, U. Meier, S. Uccirati, Rep. No. MPP-2005-77 [arXiv:hep-ph/0507158]

  32. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004); Nucl. Phys. Proc. Suppl. 135, 119 (2004)

    Article  ADS  Google Scholar 

  33. D. Kreimer, Phys. At. Nucl. 56, 1546 (1993)

    Google Scholar 

  34. A. Czarnecki, U. Kilian, D. Kreimer, Nucl. Phys. B 433, 259 (1995)

    Article  ADS  Google Scholar 

  35. A. Frink, U. Kilian, D. Kreimer, Nucl. Phys. B 488, 426 (1997)

    Article  ADS  Google Scholar 

  36. D. Kreimer, Mod. Phys. Lett. A 9, 1105 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.V. Kotikov, Phys. Lett. B 259, 314 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Fleischer, A.V. Kotikov, O.L. Veretin, Phys. Lett. B 417, 163 (1998); Nucl. Phys. B 547, 343 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. V.A. Smirnov, E.R. Rakhmetov, Theor. Math. Phys. 120, 870 (1999); Teor. Mat. Fiz. 120, 64 (1999)

    MATH  Google Scholar 

  40. T.G. Birthwright, E.W.N. Glover, P. Marquard, J. High Energy Phys. 0409, 042 (2004)

    Article  ADS  Google Scholar 

  41. J. Fleischer, V.A. Smirnov, A. Frink, J.G. Körner, D. Kreimer, K. Schilcher, J.B. Tausk, Eur. Phys. J. C 2, 747 (1998)

    Article  ADS  Google Scholar 

  42. A. Frink, Ph.D. thesis, Mainz University, 2000

  43. G.P. Lepage, Rep. No. CLNS-80/447

  44. T. Ohl, Comput. Phys. Commun. 120, 13 (1999)

    Article  ADS  MATH  Google Scholar 

  45. T. Hahn, Rep. No. MPP-2004-40 [arXiv:hep-ph/0404043]

  46. D. Kreimer, Nucl. Instrum. Methods A 389, 323 (1997)

    Article  ADS  Google Scholar 

  47. L. Brücher, Nucl. Instrum. Methods A 389, 327 (1997)

    Article  ADS  Google Scholar 

  48. J. Franzkowski, Nucl. Instrum. Methods A 389, 333 (1997)

    Article  ADS  Google Scholar 

  49. A. Frink, J.G. Körner, J.B. Tausk, Massive two-loop integrals and Higgs physics. In Proc. Joint Particle Physics Meet., Ouranoupolis, Greece, May 1997, pp. 175–200

  50. C. Bauer, H.S. Do, Comput. Phys. Commun. 144, 154 (2002)

    Article  ADS  MATH  Google Scholar 

  51. C. Bauer, A. Frink, R. Kreckel, Rep. No. MZ-TH/00-17 [arXiv:cs.sc/0004015]

  52. D. Kreimer, Z. Phys. C 54, 667 (1992)

    Article  Google Scholar 

  53. D. Kreimer, Int. J. Mod. Phys. A 8, 1797 (1993)

    Article  ADS  Google Scholar 

  54. A. Frink, Diploma thesis, Mainz University, 1996

  55. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  56. A. Andonov et al., arXiv:hep-ph/0411186

  57. R. Harlander, M. Steinhauser, Prog. Part. Nucl. Phys. 43, 167 (1999)

    Article  Google Scholar 

  58. U. Kilian, Ph.D. thesis, Mainz University, 1996

  59. L.D. Landau, Nucl. Phys. 13, 181 (1959)

    Article  MATH  Google Scholar 

  60. M. Böhm, A. Denner, H. Joos, Gauge Theory of the Strong and Electroweak Interaction (Teubner, Wiesbaden, 2001)

  61. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  62. M.M. Knodel, Ph.D. thesis, Mainz University, 2005

  63. R.H. Kleiss, A. Lazopoulos, arXiv:hep-ph/0504085

  64. A.F.W. van Hameren, Ph.D. thesis, Nijmegen University, 2001 [arXiv:hep-ph/0101094]

  65. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Groote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groote, S., Knodel, M. Evaluating massive planar two-loop tensor vertex integrals. Eur. Phys. J. C 46, 157–178 (2006). https://doi.org/10.1140/epjc/s2006-02478-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02478-9

Keywords

Navigation