Evaluating massive planar two-loop tensor vertex integrals

Theoretical Physics
  • 31 Downloads

Abstract

Using the parallel/orthogonal space method, we calculate the planar two-loop three-point diagram and two rotated reduced planar two-loop three-point diagrams. Together with the crossed topology, these diagrams are the most complicated ones in the two-loop corrections necessary, for instance, for the decay of the Z0 boson. Instead of calculating particular decay processes, we present a new algorithm which allows us to perform arbitrary next-to-next-to-leading order (NNLO) calculations for massive planar two-loop vertex functions in the general mass case. All integration steps up to the last two are performed analytically and will be implemented under xloops as part of the Mainz xloops-GiNaC project. The last two integrations are done numerically using methods like VEGAS and Divonne. Thresholds originating from Landau singularities are found and discussed in detail. In order to demonstrate the numerical stability of our methods we consider particular Feynman integrals which contribute to different physical processes. Our results can be generalized to the case of the crossed topology.

Keywords

Field Theory Elementary Particle Quantum Field Theory Physical Process Decay Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Hollik, G. Duckeck, Electroweak Precision Tests at LEP (Springer, Berlin, 2000)Google Scholar
  2. 2.
    D.Y. Bardin, J. Phys. G 29, 75 (2003)CrossRefADSGoogle Scholar
  3. 3.
    W. Hollik et al., Acta Phys. Polon. B 35, 2533 (2004)Google Scholar
  4. 4.
    LEP Collaboration, Rep. No. CERN-PH-EP-2005-041 [arXiv:hep-ex/0509008], submitted to Phys. Rep.Google Scholar
  5. 5.
    ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., Rep. No. DESY-TESLA-2001-23 [arXiv:hep-ph/0106315]Google Scholar
  6. 6.
    S. Heinemeyer, G. Weiglein, Electroweak precision tests with GigaZ. In Batavia 2000, Physics and Experiments with Future Linear e+e- Colliders. Rep. No. LC-TH-2001-001, pp. 511–514 [arXiv:hep-ph/0012364]Google Scholar
  7. 7.
    G. Weiglein, Eur. Phys. J. C 33, S630 (2004)Google Scholar
  8. 8.
    LHC/LC Study Group, G. Weiglein et al., Rep. No. SLAC-PUB-10764 [arXiv:hep-ph/0410364]Google Scholar
  9. 9.
    S. Heinemeyer, Rep. No. CERN-PH-TH-2004-159 [arXiv:hep-ph/0408269]Google Scholar
  10. 10.
    D. Kreimer, Phys. Lett. B 292, 341 (1992)CrossRefADSGoogle Scholar
  11. 11.
    N.I. Usyukina, A.I. Davydychev, Phys. Lett. B 348, 503 (1995)CrossRefADSGoogle Scholar
  12. 12.
    A.I. Davydychev, J.B. Tausk, Nucl. Phys. B 465, 507 (1996)CrossRefADSGoogle Scholar
  13. 13.
    J. Fujimoto, Y. Shimizu, K. Kato, T. Kaneko, Int. J. Mod. Phys. C 6, 525 (1995)CrossRefADSGoogle Scholar
  14. 14.
    A.A. Pivovarov, Phys. At. Nucl. 63, 1646 (2000); Yad. Fiz. 63N9, 1734 (2000)CrossRefGoogle Scholar
  15. 15.
    K.G. Chetyrkin, R. Harlander, J.H. Kühn, M. Steinhauser, Nucl. Instrum. Methods A 389, 354 (1997)CrossRefADSGoogle Scholar
  16. 16.
    S. Groote, J.G. Körner, A.A. Pivovarov, Phys. Lett. B 443, 269 (1998); Nucl. Phys. B 542, 515 (1999); Eur. Phys. J. C 11, 279 (1999); Phys. Rev. D 60, 061701 (1999); Phys. Rev. D 61, 071501 (2000); Phys. Rev. D 65, 036001 (2002); Eur. Phys. J. C 36, 471 (2004); Rep. No. MZ-TH-05-08 [arXiv:hep-ph/0506286]; S. Groote, A.A. Pivovarov, Nucl. Phys. B 580, 459 (2000)CrossRefADSGoogle Scholar
  17. 17.
    A. Ghinculov, Y.P. Yao, Nucl. Phys. B 516, 385 (1998); Phys. Rev. D 63, 054510 (2001)CrossRefADSMATHGoogle Scholar
  18. 18.
    A.I. Davydychev, V.A. Smirnov, Nucl. Instrum. Methods A 502, 621 (2003)CrossRefADSGoogle Scholar
  19. 19.
    U. Aglietti, R. Bonciani, Nucl. Phys. B 668, 3 (2003); Nucl. Phys. B 698, 277 (2004)CrossRefADSMATHGoogle Scholar
  20. 20.
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi, Nucl. Phys. B 706, 245 (2005); Nucl. Phys. B 712, 229 (2005)CrossRefADSGoogle Scholar
  21. 21.
    R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 661, 289 (2003); Erratum Nucl. Phys. B 702, 359 (2004); Nucl. Phys. B 676, 399 (2004); Nucl. Phys. B 690, 138 (2004); R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, J.J. van der Bij, Nucl. Phys. B 701, 121 (2004)ADSMATHMathSciNetGoogle Scholar
  22. 22.
    M. Caffo, H. Czyż, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 422 (2003)CrossRefADSMATHGoogle Scholar
  23. 23.
    P. Mastrolia, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 412 (2003)CrossRefADSMATHGoogle Scholar
  24. 24.
    S. Bauberger, F.A. Berends, M. Böhm, M. Buza, Nucl. Phys. B 434, 383 (1995); S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. 37B, 95 (1994)CrossRefADSGoogle Scholar
  25. 25.
    P. Post, Ph.D. thesis, Mainz University, 1997Google Scholar
  26. 26.
    P. Post, J.B. Tausk, Mod. Phys. Lett. A 11, 2115 (1996)CrossRefADSGoogle Scholar
  27. 27.
    H.S. Do, Ph.D. thesis, Mainz University, 2003Google Scholar
  28. 28.
    G. Passarino, Nucl. Phys. B 619, 257 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    A. Ferroglia, M. Passera, G. Passarino, S. Uccirati, Nucl. Phys. B 680, 199 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    S. Actis, A. Ferroglia, G. Passarino, M. Passera, S. Uccirati, Nucl. Phys. B 703, 3 (2004)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    W. Hollik, U. Meier, S. Uccirati, Rep. No. MPP-2005-77 [arXiv:hep-ph/0507158]Google Scholar
  32. 32.
    M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004); Nucl. Phys. Proc. Suppl. 135, 119 (2004)CrossRefADSGoogle Scholar
  33. 33.
    D. Kreimer, Phys. At. Nucl. 56, 1546 (1993)Google Scholar
  34. 34.
    A. Czarnecki, U. Kilian, D. Kreimer, Nucl. Phys. B 433, 259 (1995)CrossRefADSGoogle Scholar
  35. 35.
    A. Frink, U. Kilian, D. Kreimer, Nucl. Phys. B 488, 426 (1997)CrossRefADSGoogle Scholar
  36. 36.
    D. Kreimer, Mod. Phys. Lett. A 9, 1105 (1994)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    A.V. Kotikov, Phys. Lett. B 259, 314 (1991)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    J. Fleischer, A.V. Kotikov, O.L. Veretin, Phys. Lett. B 417, 163 (1998); Nucl. Phys. B 547, 343 (1999)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    V.A. Smirnov, E.R. Rakhmetov, Theor. Math. Phys. 120, 870 (1999); Teor. Mat. Fiz. 120, 64 (1999)MATHGoogle Scholar
  40. 40.
    T.G. Birthwright, E.W.N. Glover, P. Marquard, J. High Energy Phys. 0409, 042 (2004)CrossRefADSGoogle Scholar
  41. 41.
    J. Fleischer, V.A. Smirnov, A. Frink, J.G. Körner, D. Kreimer, K. Schilcher, J.B. Tausk, Eur. Phys. J. C 2, 747 (1998)CrossRefADSGoogle Scholar
  42. 42.
    A. Frink, Ph.D. thesis, Mainz University, 2000Google Scholar
  43. 43.
    G.P. Lepage, Rep. No. CLNS-80/447Google Scholar
  44. 44.
    T. Ohl, Comput. Phys. Commun. 120, 13 (1999)CrossRefADSMATHGoogle Scholar
  45. 45.
    T. Hahn, Rep. No. MPP-2004-40 [arXiv:hep-ph/0404043]Google Scholar
  46. 46.
    D. Kreimer, Nucl. Instrum. Methods A 389, 323 (1997)CrossRefADSGoogle Scholar
  47. 47.
    L. Brücher, Nucl. Instrum. Methods A 389, 327 (1997)CrossRefADSGoogle Scholar
  48. 48.
    J. Franzkowski, Nucl. Instrum. Methods A 389, 333 (1997)CrossRefADSGoogle Scholar
  49. 49.
    A. Frink, J.G. Körner, J.B. Tausk, Massive two-loop integrals and Higgs physics. In Proc. Joint Particle Physics Meet., Ouranoupolis, Greece, May 1997, pp. 175–200Google Scholar
  50. 50.
    C. Bauer, H.S. Do, Comput. Phys. Commun. 144, 154 (2002)CrossRefADSMATHGoogle Scholar
  51. 51.
    C. Bauer, A. Frink, R. Kreckel, Rep. No. MZ-TH/00-17 [arXiv:cs.sc/0004015]Google Scholar
  52. 52.
    D. Kreimer, Z. Phys. C 54, 667 (1992)CrossRefGoogle Scholar
  53. 53.
    D. Kreimer, Int. J. Mod. Phys. A 8, 1797 (1993)CrossRefADSGoogle Scholar
  54. 54.
    A. Frink, Diploma thesis, Mainz University, 1996Google Scholar
  55. 55.
    G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)CrossRefADSGoogle Scholar
  56. 56.
    A. Andonov et al., arXiv:hep-ph/0411186Google Scholar
  57. 57.
    R. Harlander, M. Steinhauser, Prog. Part. Nucl. Phys. 43, 167 (1999)CrossRefGoogle Scholar
  58. 58.
    U. Kilian, Ph.D. thesis, Mainz University, 1996Google Scholar
  59. 59.
    L.D. Landau, Nucl. Phys. 13, 181 (1959)CrossRefMATHGoogle Scholar
  60. 60.
    M. Böhm, A. Denner, H. Joos, Gauge Theory of the Strong and Electroweak Interaction (Teubner, Wiesbaden, 2001)Google Scholar
  61. 61.
    R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    M.M. Knodel, Ph.D. thesis, Mainz University, 2005Google Scholar
  63. 63.
    R.H. Kleiss, A. Lazopoulos, arXiv:hep-ph/0504085Google Scholar
  64. 64.
    A.F.W. van Hameren, Ph.D. thesis, Nijmegen University, 2001 [arXiv:hep-ph/0101094]Google Scholar
  65. 65.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für PhysikJohannes-Gutenberg-UniversitätMainzGermany
  2. 2.Füüsika-KeemiateaduskondTartu ÜlikoolTartuEstonia

Personalised recommendations