Unintegrated gluon distributions and Higgs boson productionin proton-proton collisions

  • M. Łuszczak
  • A. Szczurek
Theoretical Physics

Abstract.

Inclusive cross sections for Higgs boson production in proton-proton collisions are calculated in the formalism of unintegrated gluon distributions (UGDFs). Different UGDFs from the literature are used. Although they were constructed in order to describe the HERA deep-inelastic scattering F 2 data, they lead to surprisingly different results for Higgs boson production. We present both the two-dimensional invariant cross section as a function of Higgs boson rapidity and transverse momentum, as well as the corresponding projections on rapidity or transverse momentum. We quantify the differences between different UGDs by applying different cuts on interrelations between the transverse momentum of the Higgs and the transverse momenta of both fusing gluons. We focus on the large rapidity region. The interplay of the gluon-gluon fusion and weak-boson fusion in rapidity and transverse momentum is discussed. We find that above p t ∼ 50–100 GeV the weak-gauge boson fusion dominates over gluon-gluon fusion.

PACS. 12.38.Bx,12.38.Cy,13.85.Qk,14.70.Hp,14.80.Bn

Keywords

Field Theory Elementary Particle Quantum Field Theory Higgs Boson Transverse Momentum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Anderson (Small-x collaboration), Eur. Phys. J. C 25, 77 (2002)ADSGoogle Scholar
  2. 2.
    J. Andersen (Small-x collaboration), Eur. Phys. J. C 35, 67 (2004)CrossRefADSGoogle Scholar
  3. 3.
    A. Szczurek, N.N. Nikolaev, W. Schäfer, J. Speth, Phys. Lett. B 500, 254 (2001)CrossRefADSGoogle Scholar
  4. 4.
    M. Łuszczak, A. Szczurek, Phys. Lett. B 59, 291 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Jung, Mod. Phys. Lett. A 19, 1 (2004)CrossRefADSGoogle Scholar
  6. 6.
    A. Szczurek, Acta Phys. Polon. B 34, 3191 (2003)ADSGoogle Scholar
  7. 7.
    D. Kharzeev, E. Levin, Phys. Lett. B 523, 79 (2001)CrossRefADSGoogle Scholar
  8. 8.
    M.A. Kimber, A.D. Martin, M.G. Ryskin, Phys. Rev. D 63, 114027 (2001)CrossRefADSGoogle Scholar
  9. 9.
    J. Kwieciński, Acta Phys. Polon. B 33, 1809 (2002)ADSGoogle Scholar
  10. 10.
    A. Gawron, J. Kwieciński, Acta Phys. Polon. B 34, 133 (2003)ADSGoogle Scholar
  11. 11.
    A. Gawron, J. Kwieciński, W. Broniowski, Phys. Rev. D 68, 054001 (2003)CrossRefADSGoogle Scholar
  12. 12.
    J. Kwieciński, A. Szczurek, Nucl. Phys. B 680, 164 (2004)CrossRefADSGoogle Scholar
  13. 13.
    M. Czech, A. Szczurek, Phys. Rev. C 72, 015202 (2005); nucl-th/0510007CrossRefADSGoogle Scholar
  14. 14.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics (Cambridge University Press, Cambridge 1996)Google Scholar
  15. 15.
    M. Ciafaloni, Nucl. Phys. B 296, 49 (1988); S. Catani, F. Fiorani, G. Marchesini, Phys. Lett. B 234, 339 (1990); Nucl. Phys. B 336, 18 (1990)CrossRefADSGoogle Scholar
  16. 16.
    J.C. Collins, D. Soper, G. Sterman, Phys. Lett. B 109(109), 388 (1982); Nucl. Phys. B 223, 381 (1983); Phys. Lett. B 126, 275 (1983); Nucl. Phys. B 250, 199 (1985)CrossRefGoogle Scholar
  17. 17.
    A. Gawron, J. Kwieciński, Phys. Rev. D 70, 014003 (2004)CrossRefADSGoogle Scholar
  18. 18.
    G. Watt, A.D. Martin, M.G. Ryskin, Phys. Rev. D 70, 014012 (2004)CrossRefADSGoogle Scholar
  19. 19.
    F. Hautmann, Phys. Lett. B 535, 159 (2002)CrossRefADSGoogle Scholar
  20. 20.
    A.V. Lipatov, N.P. Zotov, hep-ph/0501172Google Scholar
  21. 21.
    I. Hinchliffe, S.F. Novaes, Phys. Rev. D 38, 3475 (1988); R.P. Kauffman, Phys. Rev. D 44, 1415 (1991); C.-P. Yuan, Phys. Lett. B 283, 395 (1992); C. Balazs, C.P. Yuan, Phys. Lett. B 478, 192 (2000); C. Balazs, J. Huston, I. Puljak, Phys. Rev. D 63, 014021 (2001); E.L. Berger, J.-W. Qiu, Phys. Rev. D 67, 034026 (2003); G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Phys. Lett. B 564, 65 (2003)CrossRefADSGoogle Scholar
  22. 22.
    A. Kulesza, W.J. Stirling, JHEP 0312, 056 (2003)CrossRefADSGoogle Scholar
  23. 23.
    A. Kulesza, G. Sterman, W. Vogelsang, hep-ph/0309264Google Scholar
  24. 24.
    K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 60, 114023 (1999)CrossRefADSGoogle Scholar
  25. 25.
    A.J. Askew, J. Kwieciński, A.D. Martin, P.J. Sutton, Phys. Rev. D 49, 4402 (1994)CrossRefADSGoogle Scholar
  26. 26.
    K. Kutak, A.M. Staśto, Eur. Phys. J. C 41, 343 (2005)CrossRefADSGoogle Scholar
  27. 27.
    J. Blümlein, talk at the workshop on Deep Inelastic Scattering and QCD, hep-ph/9506403Google Scholar
  28. 28.
    M. Glück, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)CrossRefADSGoogle Scholar
  29. 29.
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976)ADSGoogle Scholar
  30. 30.
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, D. Zeppenfeld, Phys. Rev. D 67, 073003 (2003)CrossRefADSGoogle Scholar
  31. 31.
    R.K. Ellis, I. Hinchliffe, M. Soldate, J.J. van der Bij, Nucl. Phys. B 297, 221 (1988); U. Baur, E.W.N. Glover, Nucl. Phys. B 339, 38 (1990)CrossRefADSGoogle Scholar
  32. 32.
    T. Figy, D. Zeppenfeld, C. Oleari, Phys. Rev. D 68, 073005 (2003)CrossRefADSGoogle Scholar
  33. 33.
    R.N. Cahn, S. Dawson, Phys. Lett. B 136, 196 (1984)CrossRefADSGoogle Scholar
  34. 34.
    ALEPH, DELPHI, L3, OPAL collaborations, LEP Electroweak Working Group and SLD Electroweak, Heavy Flavour Groups, hep-ex/0412015Google Scholar
  35. 35.
    R.S. Chivukula, H.-J. He, M. Kurachi, E.H. Simons, M. Tanabashi, Phys. Rev. D 70, 075008 (2004); T. Nagasawa, M. Sakamoto, Prog. Theor. Phys. 112, 629 (2004); Ch. Schwinn, Phys. Rev. D 69, 116005 (2004); C. Csaki, C. Grojean, J. Hubisz, Y. Shirnan, J. Terning, Phys. Rev. D 70, 015012 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Łuszczak
    • 2
  • A. Szczurek
    • 1
    • 2
  1. 1.Institute of Nuclear Physics PANCracowPoland
  2. 2.University of RzeszówRzeszówPoland

Personalised recommendations