Comparison of NNLO DIS scheme splitting functionswith results from exact gluon kinematics at small x

Theoretical Physics

Abstract.

We consider the effect of exact gluon kinematics in the virtual photon-gluon impact factor at small x. By comparing with fixed order DIS scheme splitting and coefficient functions, we show that the exact kinematics results match the fixed order results well at each order, which suggests that they allow for an accurate NLL analysis of proton structure functions. We also present, available for the first time, x-space parameterisations of the NNLO DGLAP splitting functions in the DIS scheme, and also the longitudinal coefficients for neutral current scattering.

Keywords

Field Theory Elementary Particle Quantum Field Theory Structure Function Impact Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya.Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)Google Scholar
  2. 2.
    Victor S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127 (1998) [hep-ph/9802290]ADSGoogle Scholar
  3. 3.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 35, 325 (2004) [hep-ph/0308087]CrossRefADSGoogle Scholar
  4. 4.
    Stefano Catani, Z. Phys. C 75, 665 (1997) [hep-ph/9609263]CrossRefGoogle Scholar
  5. 5.
    S. Catani, F. Hautmann, Nucl. Phys. B 427, 475 (1994) [hep-ph/9405388]CrossRefADSGoogle Scholar
  6. 6.
    Guido Altarelli, R.K. Ellis, G. Martinelli, Nucl. Phys. B 143, 521 (1978)CrossRefADSGoogle Scholar
  7. 7.
    A. Bialas, H. Navelet, R. Peschanski, Nucl. Phys. B 603, 218 (2001) [hep-ph/0101179]ADSMathSciNetGoogle Scholar
  8. 8.
    E.G. Floratos, D.A. Ross, Christopher T. Sachrajda, Nucl. Phys. B 152, 493 (1979)CrossRefADSGoogle Scholar
  9. 9.
    A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain, Nucl. Phys. B 153, 161 (1979)ADSGoogle Scholar
  10. 10.
    E.G. Floratos, C. Kounnas, R. Lacaze, Nucl. Phys. B 192, 417 (1981)CrossRefADSGoogle Scholar
  11. 11.
    R. Hamberg, W.L. van Neerven, Nucl. Phys. B 379, 143 (1992)CrossRefADSGoogle Scholar
  12. 12.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005) [hep-ph/0411112]ADSGoogle Scholar
  13. 13.
    A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004) [hep-ph/0404111]CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    W.L. van Neerven, A. Vogt, Nucl. Phys. B 588, 345 (2000) [hep-ph/0006154]ADSGoogle Scholar
  15. 15.
    Johannes Blumlein, Stefan Kurth, Phys. Rev. D 60, 014018 (1999) [hep-ph/9810241]ADSGoogle Scholar
  16. 16.
    A. Retey, J.A.M. Vermaseren, Nucl. Phys. B 604, 281 (2001) [hep-ph/0007294]ADSGoogle Scholar
  17. 17.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004) [hep-ph/0403192]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J.A.M. Vermaseren, A. Vogt, S. Moch, hep-ph/0504242Google Scholar
  19. 19.
    G. Parisi, Phys. Lett. B 90, 295 (1980)ADSGoogle Scholar
  20. 20.
    G. Curci, M. Greco, Phys. Lett. B 92, 175 (1980)ADSGoogle Scholar
  21. 21.
    A. Vogt, Phys. Lett. B 471, 97 (1999) [hep-ph/9910545]ADSGoogle Scholar
  22. 22.
    S. Catani, M. Ciafaloni, F. Hautmann, Nucl. Phys. B 366, 135 (1991)CrossRefADSGoogle Scholar
  23. 23.
    Robert S. Thorne, Phys. Lett. B 474, 372 (2000) [hep-ph/9912284]ADSGoogle Scholar
  24. 24.
    C. Adloff et al. , H1 collaboration, Eur. Phys. J. C 21, 33 (2001) [hep-ex/0012053]ADSGoogle Scholar
  25. 25.
    M. Arneodo et al. , New Muon collaboration., Nucl. Phys. B 441, 12 (1995) [hep-ex/9504002]ADSGoogle Scholar
  26. 26.
    J. Breitweg et al. , ZEUS collaboration, Phys. Lett. B 487, 53 (2000) [hep-ex/0005018]Google Scholar
  27. 27.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 35, 325 (2004) [hep-ph/0308087]CrossRefADSGoogle Scholar
  28. 28.
    John C. Collins, R.K. Ellis, Nucl. Phys. Proc. Suppl., C 18, 80 (1991)Google Scholar
  29. 29.
    S. Catani, M. Ciafaloni, F. Hautmann, Phys. Lett. B 242, 97 (1990)ADSGoogle Scholar
  30. 30.
    E. Remiddi, J.A.M. Vermaseren, Int. J. Mod. Phys. A15, 725 (2000) [hep-ph/9905237]Google Scholar
  31. 31.
    T. Gehrmann, E. Remiddi, Comput. Phys. Commun. 141, 296 (2001) [hep-ph/0107173]ADSMATHMathSciNetGoogle Scholar
  32. 32.
    E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 383, 525 (1992)CrossRefADSGoogle Scholar
  33. 33.
    George Sterman, Nucl. Phys. B 281, 310 (1987)CrossRefADSGoogle Scholar
  34. 34.
    S. Catani, L. Trentadue, Nucl. Phys. B 327, 323 (1989)CrossRefADSGoogle Scholar
  35. 35.
    Nikolaos Kidonakis, George Sterman, Nucl. Phys. B 505, 321 (1997) [hep-ph/9705234]CrossRefADSGoogle Scholar
  36. 36.
    S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349, 635 (1991)CrossRefADSGoogle Scholar
  37. 37.
    S. Moch, J.A.M. Vermaseren, A. Vogt, hep-ph/0506288Google Scholar
  38. 38.
    E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 273, 476 (1991)ADSGoogle Scholar
  39. 39.
    J. Pumplin et al. , JHEP 07, 012 (2002) [hep-ph/0201195]Google Scholar
  40. 40.
    Alan D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23, 73 (2002) [hep-ph/0110215]CrossRefADSGoogle Scholar
  41. 41.
    Jochen Bartels, S. Gieseke, C.F. Qiao, Phys. Rev. D 63, 056014 (2001) [hep-ph/0009102]ADSGoogle Scholar
  42. 42.
    Bartels, Jochen, S. Gieseke, A. Kyrieleis, Phys. Rev. D 65, 014006 (2002) [hep-ph/0107152]ADSGoogle Scholar
  43. 43.
    J. Bartels, D. Colferai, S. Gieseke, A. Kyrieleis, Phys. Rev. D 66, 094017 (2002) [hep-ph/0208130]ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations