Advertisement

One-loop electroweak factorizable correctionsfor the Higgsstrahlung at a linear collider

  • F. Jegerlehner
  • K. Kołodziej
  • T. Westwański
Theoretical Physics

Abstract.

We present standard model predictions for the four-fermion reaction \(e^{ + } e^{ - } \to \mu ^{ + } \mu ^{ - } \ifmmode\expandafter\bar\else\expandafter\=\fi{b}b\) being one of the best detection channels of a low-mass Higgs boson produced through the Higgsstrahlung mechanism at a linear collider. We include leading virtual and real QED corrections due to initial state radiation and a modification of the Higgs-\(b\bar{b}\) Yukawa coupling, caused by the running of the b-quark mass, for \(e^{ + } e^{ - } \to \mu ^{ + } \mu ^{ - } \ifmmode\expandafter\bar\else\expandafter\=\fi{b}b\). The complete \(\mathcal{O}(\alpha)\) electroweak corrections to Z-Higgs production and to the Z-boson decay width, as well as the remaining QCD and EW corrections to the Higgs decay width, as can be calculated with the program HDECAY, are taken into account in the double-pole approximation.

Keywords

Higgs Boson Yukawa Coupling Decay Width Particle Acceleration Good Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Erler, P. Langacker, in: PDG 2004, S. Eidelman et al. , Phys. Lett. B 592, 114 (2004)MathSciNetGoogle Scholar
  2. 2.
    R. Barate et al. , Phys. Lett. B 565, 61 (2003)CrossRefADSGoogle Scholar
  3. 3.
    J.A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], arXiv:hep-ph/0106315; T. Abe et al. , [American Linear Collider Working Group Collaboration], arXiv:hep-ex/0106056; K. Abe et al. [ACFA Linear Collider Working Group Collaboration], arXiv:hep-ph/0109166Google Scholar
  4. 4.
    D.R.T. Jones, S.T. Petcov, Phys. Lett. B 84, 440 (1979); R.L. Kelly, T. Shimada, Phys. Rev. D 23, 1940 (1981); V. Barger, et al. , Phys. Rev. D 49, 79 (1994)CrossRefADSGoogle Scholar
  5. 5.
    F. Jegerlehner, K. Kołodziej, T. Westwański, Nucl. Phys. Proc. Suppl. 135, 92 (2004), arXiv:hep-ph/0407071CrossRefADSGoogle Scholar
  6. 6.
    F.A. Berends, R. Pittau, R. Kleiss, Comput. Phys. Commun. 85, 437 (1995)CrossRefADSGoogle Scholar
  7. 7.
    A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl. Phys. B 560, 33 (1999); Comput. Phys. Commun. 153, 462 (2003)CrossRefADSGoogle Scholar
  8. 8.
    F. Jegerlehner, K. Kołodziej, Eur. Phys. J. C 23, 463 (2002)CrossRefADSGoogle Scholar
  9. 9.
    F. Krauss, R. Kuhn, G. Soff, JHEP 0202, 044 (2002); A. Schalicke, F. Krauss, R. Kuhn, G. Soff, JHEP 0212, 013 (2002)CrossRefADSGoogle Scholar
  10. 10.
    E. Boos, M. Dubinin, Phys. Lett. B 308, 147 (1993); G. Montagna, O. Nicrosini, F. Piccinini, Phys. Lett. B 348, 496 (1995)CrossRefADSGoogle Scholar
  11. 11.
    G. Passarino, Nucl. Phys. B 448, 3 (1997)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Vicini, Acta Phys. Polon. B 29, 2847 (1998)ADSGoogle Scholar
  13. 13.
    F. Boudjema et al. , Nucl. Phys. Proc. Suppl. 135, 323 (2004), arXiv:hep-ph/0407079CrossRefGoogle Scholar
  14. 14.
    A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, arXiv:hep-ph/0502063; hep-ph/0505042Google Scholar
  15. 15.
    G. Belanger, et al. , Nucl. Phys. Proc. Suppl. 116, 353 (2003); G. Belanger, et al. , Phys. Lett. B 559, 252 (2003); A. Denner, S. Dittmaier, M. Roth, M.M. Weber, Phys. Lett. B 560, 196 (2003); Nucl. Phys. B 660, 289 (2003)CrossRefADSGoogle Scholar
  16. 16.
    W. Beenakker, F.A. Berends, A.P. Chapovsky, Nucl. Phys. B 548, 3 (1999); A. Denner, et al. , Nucl. Phys. B 587, 67 (2000); S. Jadach et al. , Phys. Rev. D 61, 113010 (2000)CrossRefADSGoogle Scholar
  17. 17.
    K. Kołodziej, F. Jegerlehner, Comput. Phys. Commun. 159, 106 (2004); arXiv:hep-ph/0308114CrossRefADSGoogle Scholar
  18. 18.
    J. Fleischer, F. Jegerlehner, Nucl. Phys. B 216, 469 (1983); BI-TP 87/04CrossRefADSGoogle Scholar
  19. 19.
    B.A. Kniehl, Z. Phys. C 55, 605 (1992); A. Denner, J. Küblbeck, R. Mertig, M. Böhm, Z. Phys. C 56, 261 (1992)CrossRefGoogle Scholar
  20. 20.
    See e.g. M. Consoli, S. Lo Presti, L. Maiani, Nucl. Phys. B 223, 474 (1983); F. Jegerlehner, Z. Phys. C 32, 425 (1986); A.A. Akhundov, D.Yu. Bardin, T. Riemann, Nucl. Phys. B 276, 1 (1986); D.Yu. Bardin, S. Riemann, T. Riemann, Z. Phys. C 32, 121 (1986)CrossRefADSGoogle Scholar
  21. 21.
    F. Jegerlehner, in: Proceedings of the XI International School of Theoretical Physics, M. Zrałek and R. Mańka (eds.), World Scientific 1988, pp. 33-108Google Scholar
  22. 22.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)CrossRefADSMATHGoogle Scholar
  23. 23.
    W. Beenakker, A.P. Chapovsky, F.A. Berends, Nucl. Phys. B 560, 33 (1999)CrossRefGoogle Scholar
  24. 24.
    A. Denner, S. Dittmaier, M. Roth, Phys. Lett. B 429, 145 (1998); Nucl. Phys. B 519, 39 (1998)CrossRefADSGoogle Scholar
  25. 25.
    G.J. van Oldenborgh, J.A.M. Vermaseren, Z. Physi C 46, 425 (1990)CrossRefGoogle Scholar
  26. 26.
    PDG 2004, S. Eidelman et al. , Phys. Lett. B 592, 114 (2004)Google Scholar
  27. 27.
    W. Beenakker et al. , in: G. Altarelli, T. Sjöstrand, F. Zwirner (eds.), Physics at LEP2 (Report CERN 96-01, Geneva, 1996), Vol. 1, p. 79, hep-ph/9602351Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  2. 2.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations