Parton recombination at all pT

  • R. C. Hwa
Theoretical Physics


Hadron production at all pT in heavy-ion collisions in the framework of parton recombination is reviewed. It is shown that the recombination of thermal and shower partons dominates the hadron spectra in the intermediate pT region. In d + Au collisions, the physics of particle production at any \(\eta\) is basically the same as at \(\eta = 0\). The Cronin effect is described as a result of the final-state instead of the initial-state interaction. The suppression of R CP at high \(\eta\) is due to the reduction of the soft parton density on the deuteron side, thus resulting in less pions being produced by recombination, an explanation that requires no new physics. In Au + Au collisions a large \(p/\pi\) ratio is obtained because the thermal partons can contribute to the formation of a proton more than they do to the pion.


Recombination Field Theory Elementary Particle Quantum Field Theory Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Hwa, in Proceedings for the International Symposium on Multiparticle Dynamics, Sonoma County, CA, July 2004, Acta Phys. Polon. B 36, (2005); nucl-th/0410038Google Scholar
  2. 2.
    I. Arsene et al. (BRAHMS Collaboration), nucl-ex/0403005Google Scholar
  3. 3.
    L. McLerran, hep-ph/0402137Google Scholar
  4. 4.
    D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 730, 448 (2004); D. Kharzeev, Y. Korchegov, K. Tuchin, Phys. Rev. D 68, 094013 (2003); hep-ph/0405045CrossRefGoogle Scholar
  5. 5.
    R.C. Hwa, C.B. Yang, Phys. Rev. Lett. 93, 082302 (2004); Phys. Rev. C 70, 037901 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    R.C. Hwa, C.B. Yang, R.J. Fries, nucl-th/0410111; Phys. Rev. C (to be published)Google Scholar
  7. 7.
    R.C. Hwa, C.B. Yang, Phys. Rev. C 70, 024905 (2004)CrossRefGoogle Scholar
  8. 8.
    R.C. Hwa, C.B. Yang, Phys. Rev. C 70, 024904 (2004)CrossRefGoogle Scholar
  9. 9.
    J.W. Cronin et al. , Phys. Rev. D 11, 3105 (1975)CrossRefGoogle Scholar
  10. 10.
    F. Matathias (for the PHENIX collaboration), J. Phys. G: Nucl. Part. Phys. 30, S1113 (2004)Google Scholar
  11. 11.
    R.C. Hwa, C.B. Yang, Phys. Rev. C 66, 205204 (2002)Google Scholar
  12. 12.
    S.S. Adler, PHENIX Collaboration, Phys. Rev. Lett. 91, 072301 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    S.S. Adler, PHENIX Collaboration, Phys. Rev. C 69, 034909 (2004)CrossRefGoogle Scholar
  14. 14.
    V. Greco, C.M. Ko, P. Lévai, Phys. Rev. Lett. 90, 202302 (2003); Phys. Rev. C 68, 034904 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    R.J. Fries, B. Müller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003); Phys. Rev. C 68, 044902 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.University of OregonInstitute of Theoretical Science and Department of PhysicsEugeneUSA

Personalised recommendations