Advertisement

Classical solutions in a Lorentz violating scenario of Maxwell-Chern-Simons-Proca electrodynamics

  • H. BelichJr.
  • T. Costa-Soares
  • M. M. FerreiraJr.
  • J. A. Helayël-Neto
Theoretical Physics

Abstract.

Taking as starting point the planar model that arises from the dimensional reduction of the Abelian-Higgs Carroll-Field-Jackiw model, we write down and study the extended Maxwell equations and the associated wave equations for the potentials. The solutions for these equations correspond to the usual ones for the MCS-Proca system, supplemented with background-dependent correction terms. In the case of a purely timelike background, exact algebraic solutions are presented which possess a similar behavior to the MCS-Proca counterparts near and far from the origin. On the other hand, for a purely spacelike background, only approximate solutions are feasible. They consist of non-trivial analytic expressions with manifest evidence of spatial anisotropy, which is consistent with the existence of a privileged direction in space. These solutions also behave similarly to the MCS-Proca ones near and far from the origin.

Keywords

Anisotropy Field Theory Elementary Particle Quantum Field Theory Approximate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Carroll, G.B. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990)CrossRefGoogle Scholar
  2. 2.
    D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997); 58, 116002 (1998)CrossRefGoogle Scholar
  3. 3.
    V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989); V.A. Kostelecky, R. Potting, Nucl. Phys. B 359, 545 (1991); Phys. Lett. B 381, 89 (1996); Phys. Rev. D 51, 3923 (1995)CrossRefGoogle Scholar
  4. 4.
    S.R. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999); V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001); Phys. Rev. D 66, 056005 (2002)CrossRefGoogle Scholar
  5. 5.
    R. Bluhm, A. Kostelecy, C. Lane, Phys. Rev. Lett. 84, 1098 (2000); R. Bluhm, A. Kostelecy, Phys. Rev. Lett. 84, 1381 (2000); R. Bluhm, A. Kostelecy, C. Lane, N. Russell, Phys. Rev. Lett. 88, 090801 (2002); O. Gagnon, G.D. Moore, Phys. Rev. D 70, 065002 (2004); H. Mueller, Phys. Rev. D 71, 045004 (2005); J.A. Lipa et al. , Phys. Rev. Lett. 90, 060403 (2003); P. Wolf et al. , Phys. Rev. D 70, 051902 (2004)PubMedGoogle Scholar
  6. 6.
    C. Adam, F.R. Klinkhamer, Nucl. Phys. B 607, 247 (2001); Phys. Lett. B 513, 245 (2001); V.A. Kostelecky, R. Lehnert, Phys. Rev. D 63, 065008 (2001); A.A. Andrianov, R. Soldati, L. Sorbo, Phys. Rev. D 59, 025002 (1999); R. Lehnert, Phys. Rev. D 68, 085003 (2003); J. Math. Phys. 45, 3399 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Goldhaber, V. Timble, J. Astrophys. Astron. 17, 17 (1996); D. Hutsemékers, H. Lamy, Astron. Astrophys. 332, 410 (1998); 367, 381 (2001)Google Scholar
  8. 8.
    R. Jackiw, V.A. Kostelecký, Phys. Rev. Lett. 82, 3572 (1999); J.M. Chung, B.K. Chung, Phys. Rev. D 63, 105015 (2001); J.M. Chung, Phys. Rev. D 60, 127901 (1999); M. Perez-Victoria, Phys. Rev. Lett. 83, 2518 (1999); R. Jackiw, V.A. Kostelecky, Phys. Rev. Lett. 82, 3572 (1999); G. Bonneau, Nucl. Phys. B 593, 398 (2001); M. Perez-Victoria, JHEP 0104, 032 (2001); A.P. Baêta Scarpelli et al. , Phys. Rev. D 64, 046013 (2001)CrossRefGoogle Scholar
  9. 9.
    A.P. Baêta Scarpelli, H. Belich, J.L. Boldo, J.A. Helayël-Neto, Phys. Rev. D 67, 085021 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Belich et al., Phys. Rev. D 68, 065030 (2003); Nucl. Phys. B Suppl. 127, 105 (2004)CrossRefGoogle Scholar
  11. 11.
    R. Lehnert, R. Potting, Phys. Rev. Lett. 93, 110402 (2004); Phys. Rev. D 70, 125010 (2004)PubMedGoogle Scholar
  12. 12.
    C. Adam, F.R. Klinkhamer, Nucl. Phys. B 657, 214 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Belich, M.M. Ferreira Jr., J.A. Helayël-Neto, M.T.D. Orlando, Phys. Rev. D 67, 125011 (2003); D 69, 109903(E) (2004)CrossRefGoogle Scholar
  14. 14.
    H. Belich, M.M. Ferreira Jr., J.A. Helayël-Neto, M.T.D. Orlando, Phys. Rev. D 68, 025005 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Belich, M.M. Ferreira Jr., J.A. Helayël-Neto, Eur. Phys. J. C 38, 511 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayël-Neto, M.T.D. Orlando, hep-th/0407260Google Scholar
  17. 17.
    M.M. Ferreira Jr., Phys. Rev. D 70, 045013 (2004); D 71, 045003 (2005); B. Altschul, Phys. Rev. D 70, 056005 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • H. BelichJr.
    • 1
  • T. Costa-Soares
    • 2
    • 4
  • M. M. FerreiraJr.
    • 3
  • J. A. Helayël-Neto
    • 4
  1. 1.Departamento de Física e QuímicaUniversidade Federal do Espírito Santo (UFES)S/N GoiabeirasBrasil
  2. 2.Universidade Federal de Juiz de Fora (UFJF)Colégio Técnico UniversitárioBairro Fábrica - Juiz de Fora - MGBrasil
  3. 3.Universidade Federal do Maranhão (UFMA), Departamento de FísicaCampus Universitário do BacangaSão Luiz MABrasil
  4. 4.CBPF - Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrasil

Personalised recommendations