Advertisement

Confinement from new global defect structures

  • D. Bazeia
  • F. A. Brito
  • W. Freire
  • R. F. Ribeiro
theoretical physics

Abstract.

We investigate confinement from new global defect structures in three spatial dimensions. The global defects arise in models described by a single real scalar field, governed by special scalar potentials. They appear as electrically, magnetically or dyonically charged structures. We show that they induce confinement, when they are solutions of effective QCD-like field theories in which the vacua are regarded as color dielectric media with an antiscreening property. As expected, in three spatial dimensions the monopole-like global defects generate the Coulomb potential as part of several confining potentials.

Keywords

Color Field Theory Elementary Particle Quantum Field Theory Scalar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Eichten et al. , Phys. Rev. Lett. 34, 369 (1975)Google Scholar
  2. 2.
    L. Motyka, K. Zalewski, Z. Phys. C 69, 342 (1996)CrossRefGoogle Scholar
  3. 3.
    K. Zalewski, Acta Phys. Pol. B 29, 2535 (1998)Google Scholar
  4. 4.
    M. Ślusarczyk, A. Wereszczyński, Eur. Phys. J. C 23, 145 (2002)CrossRefGoogle Scholar
  5. 5.
    L. Wilets, Nontopological solitons (World Scientific, Singapore 1989)Google Scholar
  6. 6.
    A. Chodos, R.L. Jaffe, K. Jonhson, C.B. Thorn and V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)Google Scholar
  7. 7.
    W.A. Bardeen, M.S. Chanowitz, S.D. Drell, M. Weinstein, T.-M. Yan, Phys. Rev. D 11, 1094 (1975)Google Scholar
  8. 8.
    R. Friedberg, T.D. Lee, Phys. Rev. D 15, 1964 (1977)Google Scholar
  9. 9.
    R. Dick, Phys. Lett. B 397, 193 (1997)Google Scholar
  10. 10.
    R. Dick, Phys. Lett. B 409, 321 (1997)Google Scholar
  11. 11.
    R. Dick, Eur. Phys. J. C 6, 701 (1999)Google Scholar
  12. 12.
    S. Mandelstam, Phys. Rep. C 23, 145 (1976); G. ‘t Hooft, in: Proceedings of the Eur. Phys. Soc. 1975, edited by A. ZichichiGoogle Scholar
  13. 13.
    N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994)Google Scholar
  14. 14.
    V. Singh, D.A. Browne, R.W. Haymaker, Phys. Lett. B 306, 115 (1993)Google Scholar
  15. 15.
    D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003)Google Scholar
  16. 16.
    E. Witten, Nucl. Phys. B 507, 658 (1997)Google Scholar
  17. 17.
    M.A.C. Kneipp, P. Brockill, Phys. Rev. D 64, 125012 (2001)Google Scholar
  18. 18.
    D. Bazeia, F.A. Brito, W. Freire, R.F. Ribeiro, Int. J. Mod. Phys. A 18, 5627 (2003)Google Scholar
  19. 19.
    C. Montonen, D. Olive, Phys. Lett. B 72, 117 (1977)Google Scholar
  20. 20.
    R. Hobard, Proc. Phys. Soc. Lond. 82, 201 (1963)Google Scholar
  21. 21.
    G.H. Derrick, J. Math. Phys. 5, 1252 (1964)Google Scholar
  22. 22.
    R. Jackiw, Rev. Mod. Phys. 49, 681 (1977)Google Scholar
  23. 23.
    T.D. Lee, Particles physics and introduction to field theory (Harwood Academic, New York 1981)Google Scholar
  24. 24.
    M. Rosina, A. Schuh, H.J. Pirner, Nucl. Phys. A 448, 557 (1986)Google Scholar
  25. 25.
    Ch. Schlichter, G.S. Bali, K. Schilling, Nucl. Phys. Proc. Suppl. 63, 519 (1998)Google Scholar
  26. 26.
    G. ‘t Hooft, Nucl. Phys. B 190, 455 (1981)Google Scholar
  27. 27.
    A.S. Kronfeld, M.L. Laursen, G. Schierholz, U.J. Wiese, Phys. Lett. B 198, 516 (1987)Google Scholar
  28. 28.
    H. Shiba et al. , Phys. Lett. B 333, 461 (1994)Google Scholar
  29. 29.
    G.S. Bali et al. , Phys. Rev. D 54, 2863 (1996)Google Scholar
  30. 30.
    M. Chabab, R. Markazi, E.H. Saidi, Eur. Phys. J. C 13, 543 (2000)CrossRefGoogle Scholar
  31. 31.
    M. Chabab, N. El Biaze, R. Markazi, E.H. Saidi, Class. Quant. Grav. 18, 5085 (2001)Google Scholar
  32. 32.
    M. Cvetič, A.A. Tseytlin, Nucl. Phys. B 416, 137 (1994)Google Scholar
  33. 33.
    M. Salem, T. Vachaspati, Phys. Rev. D 66, 025003 (2002)Google Scholar
  34. 34.
    K.D. Olum, N. Graham, Phys. Lett. B 554, 175 (2003); N. Graham, K.D. Olum, Phys. Rev. D 67, 085014 (2003)Google Scholar
  35. 35.
    R. Jackiw, C. Rebbi, Phys. Rev. D 13, 3398 (1976)CrossRefGoogle Scholar
  36. 36.
    V. Villalba, J. Math. Phys. 36, 3332 (1995)Google Scholar
  37. 37.
    F.A. Brito, D. Bazeia, Phys. Rev. D 56, 7869 (1997)Google Scholar
  38. 38.
    D. Bazeia, H. Boschi-Filho, F.A. Brito, J. High Energy Phys. 04, 028 (1999)Google Scholar
  39. 39.
    D. Bazeia, F.A. Brito, Phys. Rev. D 61, 105019 (2000)Google Scholar
  40. 40.
    A. Wereszczyński, M. Ślusarczyk, Eur. Phys. J. C 30, 537 (2003)Google Scholar
  41. 41.
    D. Bazeia, C. Furtado, A.R. Gomes, J. Cosmol. Astropart. Phys. 02, 002 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • D. Bazeia
    • 1
  • F. A. Brito
    • 2
  • W. Freire
    • 3
  • R. F. Ribeiro
    • 1
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão Pessoa, ParaíbaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de Campina GrandeCampina Grande, ParaíbaBrazil
  3. 3.Departamento de MatemáticaUniversidade Regional do CaririJuazeiro do Norte, CearáBrazil

Personalised recommendations