Leptonic unitarity triangles in matter

theoretical physics

Abstract.

We present a geometric description of lepton flavor mixing and CP violation in matter by using the language of leptonic unitarity triangles. The exact analytical relations for both sides and inner angles are established between every unitarity triangle in vacuum and its effective counterpart in matter. The typical shape evolution of six triangles with the terrestrial matter density is illustrated for a realistic long-baseline neutrino oscillation experiment.

Keywords

Field Theory Elementary Particle Quantum Field Theory Matter Density Particle Acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SNO Collaboration, Q.R. Ahmad et al. , Phys. Rev. Lett. 87, 071301 (2001); 89, 011301 (2002); 89, 011302 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Super-Kamiokande Collaboration, Y. Fukuda et al. , Phys. Lett. B 467, 185 (1999); S. Fukuda et al. , Phys. Rev. Lett. 85, 3999 (2000); 86, 5656 (2001)CrossRefGoogle Scholar
  3. 3.
    KamLAND Collaboration, K. Eguchi et al. , Phys. Rev. Lett. 90, 021802 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    CHOOZ Collaboration, M. Apollonio et al. , Phys. Lett. B 420, 397 (1998); Palo Verde Collaboration, F. Boehm et al. , Phys. Rev. Lett. 84, 3764 (2000)CrossRefGoogle Scholar
  5. 5.
    K2K Collaboration, M.H. Ahn et al. , Phys. Rev. Lett. 90, 041801 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    C. Jarlskog, Phys. Rev. Lett. 55, 1839 (1985); H. Fritzsch, Z.Z. Xing, Nucl. Phys. B 556, 49 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    Z.Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004)Google Scholar
  8. 8.
    H. Fritzsch, Z.Z. Xing, Prog. Part. Nucl. Phys. 45, 1 (2000); hep-ph/9912358CrossRefGoogle Scholar
  9. 9.
    Y. Farzan, A.Yu. Smirnov, Phys. Rev. D 65, 113001 (2002)CrossRefGoogle Scholar
  10. 10.
    V. Barger, K. Whisnant, S. Pakvasa, R.J. Phillips, Phys. Rev. D 22, 2718 (1980); H.W. Zaglauer, K.H. Schwarzer, Z. Phys. C 40, 273 (1988); T.K. Kuo, J. Pantaleone, Rev. Mod. Phys. 61, 937 (1989)CrossRefGoogle Scholar
  11. 11.
    Z.Z. Xing, Phys. Lett. B 487, 327 (2000); Phys. Rev. D 64, 073014 (2001)CrossRefGoogle Scholar
  12. 12.
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S.P. Mikheyev, A.Yu. Smirnov, Yad. Fiz. (Sov. J. Nucl. Phys.) 42, 1441 (1985)CrossRefGoogle Scholar
  13. 13.
    I. Mocioiu, R. Shrock, Phys. Rev. D 62, 053017 (2000); and references thereinCrossRefGoogle Scholar
  14. 14.
    K. Kimura, A. Takamura, H. Yokomakura, Phys. Lett. B 537, 86 (2002); Phys. Rev. D 66, 073005 (2002)CrossRefGoogle Scholar
  15. 15.
    Z.Z. Xing, Phys. Rev. D 64, 033005 (2001)CrossRefGoogle Scholar
  16. 16.
    P.F. Harrison, W.G. Scott, Phys. Lett. B 535, 229 (2002); P.F. Harrison, W.G. Scott, T.J. Weiler, Phys. Lett. B 565, 159 (2003)CrossRefGoogle Scholar
  17. 17.
    Z.Z. Xing, Phys. Rev. D 65, 113010 (2002)CrossRefGoogle Scholar
  18. 18.
    V.A. Naumov, Int. J. Mod. Phys. D 1, 379 (1992)CrossRefGoogle Scholar
  19. 19.
    J.A. Aguilar-Saavedra, G.C. Branco, Phys. Rev. D 62, 096009 (2000)CrossRefGoogle Scholar
  20. 20.
    See, e.g., V. Barger, S. Geer, R. Raja, K. Whisnant, Phys. Rev. D 62, 013004 (2000); M. Freund, M. Lindner, S.T. Petcov, A. Romanino, Nucl. Phys. B 578, 27 (2000); and references thereinCrossRefGoogle Scholar
  21. 21.
    H. Minakata, H. Nunokawa, Nucl. Instrum. Meth. A 472, 421 (2000); Z.Z. Xing, Phys. Rev. D 63, 073012 (2001)Google Scholar
  22. 22.
    J. Sato, Nucl. Instrum. Meth. A 472, 434 (2000)Google Scholar
  23. 23.
    H. Zhang, Z.Z. Xing, in preparationGoogle Scholar
  24. 24.
    Particle Data Group, S. Eidelman et al. , Phys. Lett. B 592, 1 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.CCAST (World Laboratory)BeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijing P.R. China

Personalised recommendations