Advertisement

The difference between n-dimensional regularization and n-dimensional reduction in QCD

  • J. Smith
  • W. L. van Neerven
theoretical physics

Abstract.

We discuss the difference between n-dimensional regularization and n-dimensional reduction for processes in QCD which have an additional mass scale. Examples are heavy flavor production in hadron-hadron collisions or on-shell photon-hadron collisions where the scale is represented by the mass m. Another example is electroproduction of heavy flavors where we have two mass scales given by m and the virtuality of the photon \(\smash[b]{Q = \sqrt{-q^2}}\). Finally we study the Drell-Yan process where the additional scale is represented by the virtuality \(\smash[t]{Q = \sqrt{q^2}}\) of the vector boson (\(\gamma^*, W, Z\)). The difference between the two schemes is not accounted for by the usual oversubtractions. There are extra counter terms which multiply the mass scale dependent parts of the Born cross sections. In the case of the Drell-Yan process it turns out that the off-shell mass regularization agrees with n-dimensional regularization.

Keywords

Field Theory Elementary Particle Quantum Field Theory Mass Scale Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Kunszt, A. Signer, Z. Trócsányi, Nucl. Phys. B 411, 397 (1994), hep-ph/9305239Google Scholar
  2. 2.
    S. Catani, M.H. Seymour, Z. Trócsányi, Phys. Rev. D 55, 6819 (1997), hep-ph/9610553Google Scholar
  3. 3.
    G. ‘t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)CrossRefGoogle Scholar
  4. 4.
    W. Siegel, Phys. Lett. B 84, 193 (1979)Google Scholar
  5. 5.
    D.M. Capper, D.R.T. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980)Google Scholar
  6. 6.
    V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 634, 247 (2002), hep-ph/0201114Google Scholar
  7. 7.
    J. Blümlein, V. Ravindran, W.L. van Neerven, Acta. Phys. Polon. B 29, 2581 (1998), hep-ph/9806355Google Scholar
  8. 8.
    W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54 (1989)Google Scholar
  9. 9.
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507 (1991)Google Scholar
  10. 10.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Nucl. Phys. B 392, 162 (1993)CrossRefGoogle Scholar
  11. 11.
    J. Smith, W.L. van Neerven, Nucl. Phys. B 374, 36 (1992)CrossRefGoogle Scholar
  12. 12.
    R. Arnold, M.H. Reno, Nucl. Phys. B 319, 37 (1989), erratum Nucl. Phys. B 330, 284 (1990)Google Scholar
  13. 13.
    R.J. Gonsalves, J. Pawlowski, C.-F. Wai, Phys. Rev. D 40, 2245 (1989)Google Scholar
  14. 14.
    G. Altarelli, R.K. Ellis, G. Martinelli, B 143, 521 (1978), erratum Nucl. Phys. B 146, 544 (1978)Google Scholar
  15. 15.
    K. Harada, T. Kaneko, N. Sakai, Nucl. Phys. B 155, 169 (1979), erratum Nucl. Phys. B 165, 545 (1980).Google Scholar
  16. 16.
    B. Humpert, W.L. van Neerven, Nucl. Phys. B 178, 498 (1981); Nucl. Phys. B 184, 225 (1981)Google Scholar
  17. 17.
    B. Humpert, W.L. van Neerven, Phys. Lett. B 84, 327 (1979), erratum Nucl. Phys. B 85, 471 (1979), Nucl. Phys. B 89, 69 (1979)Google Scholar
  18. 18.
    L.V. Avdeev, M. Yu. Kalmykov, Nucl. Phys. B 502, 419 (1997), hep-ph/9701308Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookNew YorkUSA
  2. 2.Instituut-LorentzUniversity of LeidenLeidenThe Netherlands

Personalised recommendations