Advertisement

Coherent production of pairs of parabosons of order 2

  • N. Frascino
  • C. A. Nelson
theoretical physics

Abstract.

A parameter-free statistical model is used to study multiplicity signatures for coherent production of charged pairs of parabosons of order p = 2 in comparison with those arising in the case of ordinary bosons, p = 1. Two non-negative real parameters arise because “ab” and “ba” are fundamentally distinct pair operators of charge “ + 1”, A-quanta and charge “-1”, B-quanta parabosons. In 3D plots of \({P_{m}}(q)\equiv\) “the probability of m paraboson charged pairs + q positive parabosons” versus \(\langle n\rangle \) and \(\langle n^2\rangle \), the p = 1 curve is found to lie on the relatively narrow 2D p = 2 surface.

Keywords

Field Theory Statistical Model Elementary Particle Quantum Field Theory Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Green, Phys. Rev. 90, 270 (1953); D.V. Volkov, Sov. Phys.-JETP, 11, 375 (1960); c.f. W. Pauli, Handbuch der Physik, Vol. 24, p. 113 of Sect. 14 (1934); C.P. Enz, A scientific biography of W. Pauli (Oxford U. Press 2002), p. 128Google Scholar
  2. 2.
    O.W. Greenberg, A.M.L. Messiah, Phys. Rev. B 136, 248 (1964); B 138, 1155 (1965)Google Scholar
  3. 3.
    Y. Ohnuki, S. Kamefuchi, Quantum field theory and parastatistics (Univ. Press of Tokyo 1982)Google Scholar
  4. 4.
    C.P. Wang, Phys. Rev. 180, 1463 (1969). Wang plotted Pm(q) for q=0 versus the equivalent, mean number of charged prongs \(\langle n_{s}\rangle =2\langle n\rangle +2 = \langle n_{c}\rangle \) (Horn-Silver). Figure 1a in Wang’s paper shows the laboratory kinetic energies of the data pointsGoogle Scholar
  5. 5.
    D. Horn, R. Silver, Phys. Rev. D 2, 2082 (1970)Google Scholar
  6. 6.
    D. Bhaumik, K. Bhaumik, B. Dutta-Roy, J. Phys. A 9, 1507 (1976); J.R. Klauder, B.-S. Skagerstam, Coherent States (World Sci. Pub. Co., Singapore 1985), p. 43-48; G.S. Agarwal, J. Opt. Soc. Am. B 5, 1940 (1988)Google Scholar
  7. 7.
    S. Jing, C.A. Nelson, J. Phys. A 32, 4131 (1999)Google Scholar
  8. 8.
    D. Horn, R. Silver, Annals of Phys. (NY) 66, 509 (1971), and references therein; D. Horn, Phys. Rep. 4, 1 (1972); D. Horn, F. Zachariasen, Hadron physics at very high energies (W.A. Benjamin, Reading, MA 1973)Google Scholar
  9. 9.
    T. Sjostrand, M. Bengtssson, Comp. Phys. Comm. 43, 367 (1987); G. Marchesini, B.R. Webber, Comp. Phys. Comm. 67, 465 (1992); S. Jadach, Z. Was, R. Decker, J.H. Kuhn, Comp. Phys. Comm. 76, 361 (1993); S. Jadach, B.F.L. Ward, Z. Was, Comp. Phys. Comm. 124, 233 (2000); B.F.L. Ward, S. Jadach, Acta Phys. Polon. B 33, 1543 (2002); L. Lonnblad, Comp. Phys. Comm. 71, 15 (1992); T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, E. Norrbin, Comp. Phys. Comm. 135, 238 (2001)Google Scholar
  10. 10.
    Perturbative Quantum Chromodynamics, edited by A.H. Mueller (World Sci. Pub. Co., Singapore 1989), and references therein; Yu. L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troyan, Basics of Perturbative QCD, edited by J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette 1991); J.C. Collins, D.E. Soper, Ann. Rev. Nucl. Part. Sci. 37, 383 (1987); R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics (Cambridge Uni. Press 1996); B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983); B. Andersson, The Lund model (Cambridge U. Press 1997); L.L. Frankfurt, M.I. Strikman, Phys. Rep. 160, 235 (1988); L.N. Lipatov, Phys. Rep. 286, 131 (1997); I. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001); S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111, 63 (2001); C.F. Berger, T. Kucs, G. Sterman, Phys. Rev. D 68, 014012 (2003); A. Hebecker, Phys. Rep. 331, 1 (2000); E.A. De Wolf, J. Phys. G 28, 1023 (2002)Google Scholar
  11. 11.
    H.A. Kastrup, Nucl. Phys. B 1, 309 (1967); H. Gemmel, H.A. Kastrup, Z. Phys. 229, 321 (1969); Nucl. Phys. B 14, 566 (1969)Google Scholar
  12. 12.
    Mathematica, Version 4.2, Wolfram Research, Inc. (Champaign, IL)Google Scholar
  13. 13.
    Fractional Statistics and Anyon Superconductivity, edited by F. Wilczek (World Sci. Pub. Co., Singapore 1990); A. Khare, Fractional statistics and quantum theory (World Sci. Pub. Co., Singapore 1997)Google Scholar
  14. 14.
    M.G. Albrow, A. Rostovtsev, hep-ph/0009336; V. Khoze, A.D. Martin, M. Ryskin, Eur. Phys. J. C 14, 525 (2000); hep-ph/0207313; A. De Roeck, V. Khoze, A.D. Martin et al. , Eur. Phys. J. C 25, 391 (2002); CDF Collab., D. Acosta et al. , hep-ex/0311032; TOTEM Collab., http://totem.web.cern.ch/TotemCrossRefGoogle Scholar
  15. 15.
    DAMA Collab., R. Bernabei et al. , Riv.N. Cim. 26, 1 (2003); CDMS Collab., R. Abusaidi et al. , Phys. Rev. Lett. 84, 5699 (2000); EDELWEISS Collab., A. Benoit et al. , Phys. Lett. B 513, 15 (2001); IGEX Collab., H. Morales et al. , Phys. Lett. B 489, 268 (2000); HDMS Collab., H.V. Klapdor-Kleingrothaus et al. , Nucl. Phys. Proc. Supp. 110, 364 (2002); ZEPLIN Collab., J. Dawson et al. , Nucl. Phys. Proc. Supp. 110, 109 (2002); SIMPLE Collab., J.I. Collar et al. , New J. Phys. 2, 14 (2000); PICASSO Collab., N. Boukhira et al. , Nucl. Phys. Proc. Supp. 110, 103 (2002); G. Bertone, D. Hooper, J. Silk, hep-ph/0404175Google Scholar
  16. 16.
    AGASA Collab., M. Takeda et al. , Astropar. Phys. 19, 447 (2003); Hi Res Collab., D.R. Berman et al. , Nucl. Phys. Proc. Supp. 117, 106 (2003); AUGER Collab., http://www.auger.org/; c.f. V.A. Karmanov, A.E. Kurdyavtsev, hep-ph/0207321Google Scholar
  17. 17.
    C.A. Nelson, hep-ph/0410077, to appear in Proceedings of “Vth Rencontres du Vietnam 2004”Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Department of PhysicsState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations