Advertisement

V-A sum rules with D = 10 operators

  • K. N. Zyablyuk
theoretical physics

Abstract.

The difference of vector and axial-vector charged current correlators is analyzed by means of QCD sum rules. The contribution of 10-dimensional 4-quark condensates is calculated and its value is estimated within the framework of the factorization hypothesis. It is compared to the result obtained from an operator fit of Borel sum rules in the complex q 2-plane, calculated from experimental data on hadronic \(\tau\)-decays. This fit gives accurate values of the light quark condensate and the quark-gluon mixed condensate. The size of the high-order operators and the convergence of the operator series are discussed.

Keywords

Experimental Data Field Theory Elementary Particle Quantum Field Theory Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979) 448CrossRefGoogle Scholar
  2. 2.
    ALEPH collaboration: R. Barate et al. , Eur. J. Phys. C 4, 409 (1998)CrossRefGoogle Scholar
  3. 3.
    OPAL collaboration: K. Ackerstaff et al. , Eur. J. Phys. C 7, 571 (1999)CrossRefGoogle Scholar
  4. 4.
    B.L. Ioffe, K.N. Zyablyuk, Nucl. Phys. A 687, 437 (2001)CrossRefGoogle Scholar
  5. 5.
    E. Braaten, S. Narison, A. Pich, Nucl. Phys. B 373, 581 (1992)CrossRefGoogle Scholar
  6. 6.
    M. Davier, L. Girlanda, A. Hocker, J. Stern, Phys. Rev. D 58, 096014 (1998)CrossRefGoogle Scholar
  7. 7.
    S. Peris, B. Phily, E. de Rafael, Phys. Rev. Lett. 86, 14 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Bijnens, E. Gamiz, J. Prades, JHEP 0110, 009 (2001)Google Scholar
  9. 9.
    V. Cirigliano, E. Golowich, K. Maltman, Phys. Rev. D 68, 054013 (2003)CrossRefGoogle Scholar
  10. 10.
    C.A. Dominguez, A. Schilcher, Phys. Lett B 581, 193 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Ciulli, C. Sebu, K. Schilcher, H. Spiesberger, hep-ph/0312212Google Scholar
  12. 12.
    J. Rojo, J.I. Latorre, JHEP 0401, 055 (2004)CrossRefGoogle Scholar
  13. 13.
    S.C. Generalis, J. Phys. G 15, L225 (1989)Google Scholar
  14. 14.
    K.G. Chetyrkin, S.G. Gorishny, V.P. Spiridonov, Phys. Lett. B 160, 149 (1985)CrossRefGoogle Scholar
  15. 15.
    M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)CrossRefGoogle Scholar
  16. 16.
    L.V. Lanin, V.P. Spiridonov, K.G. Chetyrkin, Yad. Fiz. 44, 1372 (1986)Google Scholar
  17. 17.
    L.-E. Adam, K.G. Chetyrkin, Phys. Lett. B 329, 129 (1994)CrossRefGoogle Scholar
  18. 18.
    M.S. Dubovikov, A.V. Smilga, ITEP-82-42Google Scholar
  19. 19.
    A. Grozin, Y. Pinelis, Phys. Lett. B 166, 429 (1986)CrossRefGoogle Scholar
  20. 20.
    V.M. Belyaev, B.L. Ioffe, Sov. Phys. JETP 56, 493 (1982)Google Scholar
  21. 21.
    H.G. Dosch, M. Jamin, S. Narison, Phys. Lett. B 220, 251 (1989)CrossRefGoogle Scholar
  22. 22.
    S. Narison, Phys. Lett. B 210, 238 (1988)CrossRefGoogle Scholar
  23. 23.
    T.-W. Chiu, T.-H. Hsieh, Nucl. Phys. B 673, 217 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Di Giacomo, Yu.A. Simonov, hep-ph/0404044Google Scholar
  25. 25.
    B.L. Ioffe, K.N. Zyablyuk, Eur. Phys. J. C 27, 229 (2003)Google Scholar
  26. 26.
    G. Launer, S. Narison, R. Tarrach, Z. Phys. C 26, 433 (1984)Google Scholar
  27. 27.
    A.G. Grozin, Int. J. Mod. Phys. A 10, 3497 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations