q-Exponentials on quantum spaces

theoretical physics

Abstract.

We present explicit formulae for q-exponentials on quantum spaces which could be of particular importance in physics, i.e. the q-deformed Minkowski space and the q-deformed Euclidean space with two, three or four dimensions. Furthermore, these formulae can be viewed as 2-, 3- or 4-dimensional analogues of the well-known q-exponential function.

Keywords

Euclidean Space Explicit Formula Quantum Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grosse, C. Klim cik, P. Pre snajder, Int. J. Theor. Phys. 35, 231 (1996) [hep-th/9505175]MathSciNetMATHGoogle Scholar
  2. 2.
    R. Oeckl, Commun. Math. Phys. 217, 451 (2001)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    C. Blohmann, Eur. Phys. J. C 30, 435 (2003) [hep-th/0111172]CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Chaichian, A.P. Demichev, Phys. Lett. B 320, 273 (1994) [hep-th/9310001]CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Wachter, M. Wohlgenannt, Eur. Phys. J. C 23, 761 (2002) [hep-th/0103120]CrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Bauer, H. Wachter, Eur. Phys. J. C 31, 261 (2003) [math-ph/0201023]CrossRefMATHGoogle Scholar
  7. 7.
    H. Wachter, Eur. Phys. J. C 32, 281 (2004) [hep-th/0206083]CrossRefGoogle Scholar
  8. 8.
    S. Majid, Braided geometry: A new approach to q-deformations, in First Caribbean Spring School of Mathematics and Theoretical Physics, Guadeloupe, 1993, edited by R. Coquereaux et al. (World Science, 1993)Google Scholar
  9. 9.
    S. Majid, Introduction to Braided Geometry and q-Minkowski Space, preprint (1994) [hep-th/9410241]Google Scholar
  10. 10.
    J. Wess, q-deformed Heisenberg Algebras, in Proceedings of the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, 1999, edited by H. Gausterer, H. Grosse, L. Pittner (no. 543 Lect. Notes in Phys., Springer 2000) [math-phy/9910013]Google Scholar
  11. 11.
    N.Yu. Reshetikhin, L.A. Takhtadzhyan, L.D. Faddeev, Leningrad Math. J. 1, 193 (1990)MathSciNetMATHGoogle Scholar
  12. 12.
    J.E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1949)MathSciNetMATHGoogle Scholar
  13. 13.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J C 16, 161 (2000) [hep-th/0001203]CrossRefMathSciNetGoogle Scholar
  14. 14.
    V.G. Drinfeld, Soviet Math. Dokl. 32, 254 (1985)Google Scholar
  15. 15.
    M. Jimbo, Lett. Math. Phys. 10, 63 (1985)MathSciNetMATHGoogle Scholar
  16. 16.
    J. Wess, B. Zumino, Nucl. Phys. B. Suppl. 18, 302 (1991)CrossRefGoogle Scholar
  17. 17.
    S. Majid, Suppl. Rend. Circ. Mat. Palermo, Ser. II, 26, 197 (1991)Google Scholar
  18. 18.
    S. Majid, Lec. Notes Pure Appl. Math. 158, 55 (1994)MATHGoogle Scholar
  19. 19.
    S. Mac Lane, Categories for the working mathematician (Springer, Berlin 1974)Google Scholar
  20. 20.
    M. Chaichian, A.P. Demichev, Introduction to quantum groups (World Scientific, Singapore 1996)Google Scholar
  21. 21.
    S. Majid, Foundations of quantum group theory (University Press, Cambridge 1995)Google Scholar
  22. 22.
    S. Majid, J. Math. Phys. 34, 4843 (1993)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    L.C. Biedenharn, M.A. Lohe, Quantum group symmetry and q-tensor algebras (World Scientific, Singapore 1995)Google Scholar
  24. 24.
    T.H. Koornwinder, Special functions and q-commuting variables, preprint (1996) [q-alg/9608008]Google Scholar
  25. 25.
    A. Lorek, W. Weich, J. Wess, Z. Phys. C 76, 375 (1997) [q-alg/9702025]CrossRefMathSciNetGoogle Scholar
  26. 26.
    U. Carow-Watamura, M. Schlieker, S. Watamura, Z. Phys. C 49, 439 (1991)MathSciNetGoogle Scholar
  27. 27.
    A. Klimyk, K. Schmüdgen, Quantum groups and their representations (Springer, Berlin 1997)Google Scholar
  28. 28.
    S. Majid, J. Geom. Phys. 22, 14 (1997)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    H. Ocambo, Z. Phys. C 70, 525 (1996)CrossRefGoogle Scholar
  30. 30.
    U. Carow-Watamura, M. Schlieker, M. Scholl, S. Watamura, Z. Phys. C 48, 159 (1990)MathSciNetGoogle Scholar
  31. 31.
    W.B. Schmidke, J. Wess, B. Zumino, Z. Phys. C 52, 471 (1991)MathSciNetMATHGoogle Scholar
  32. 32.
    S. Majid, J. Math. Phys. 32, 3246 (1991)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    V.K. Dobrev, Phys. Lett. B 341 133 (1994); B 346, 427 (1995)Google Scholar
  34. 34.
    M. Chaichian, A.P. Demichev, J. Math. Phys. 36, 398 (1995)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    A. Lorek, W.B. Schmidke, J. Wess, Lett. Math. Phys. 31, 279 (1994)MathSciNetMATHGoogle Scholar
  36. 36.
    A. Kempf, S. Majid, J. Math. Phys. 35, 6802 (1994)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    O. Ogievetsky, W.B. Schmidke, J. Wess, B. Zumino, Commun. Math. Phys. 150, 495 (1992)MathSciNetMATHGoogle Scholar
  38. 38.
    S. Majid, J. Math. Phys. 36, 4436 (1995)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Sektion PhysikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations