Advertisement

Spatially dependent quantum interference effects in the detection probability of charged leptons produced in neutrino interactions or weak decay processes

  • J. H. Field
theoretical physics

Abstract.

Feynman’s path amplitude formulation of quantum mechanics is used to analyse the production of charged leptons from charged current weak interaction processes. For neutrino induced reactions the interference effects predicted are usually called “neutrino oscillations”. Similar effects in the detection of muons from pion decay are here termed “muon oscillations”. Processes considered include pion decay (at rest and in flight), and muon decay and nuclear \(\beta\)-decay at rest. In all cases studied, a neutrino oscillation phase different from the conventionally used one is found.

Keywords

Interference Effect Neutrino Oscillation Charged Lepton Oscillation Phase Pion Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Pontecorvo, JETP 33, 599 (1957), [Sov. Phys. JETP 6, 429 (1958)]; JETP 34, 247 (1958) [Sov. Phys. JETP 7, 172 (1958)]Google Scholar
  2. 2.
    S.M. Bilenky, B. Pontecorvo, Phys. Rep. 41, 225 (1978)CrossRefGoogle Scholar
  3. 3.
    S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59, 671 (1987)CrossRefGoogle Scholar
  4. 4.
    Y. Grossman, H.J. Lipkin, Phys. Rev. D 55, 2760 (1997)CrossRefGoogle Scholar
  5. 5.
    S. De Leo, G. Ducati, P. Rotelli, Mod. Phys. Lett. A 15, 2057 (2000)CrossRefGoogle Scholar
  6. 6.
    R.G. Winter, Lettere al Nuovo Cimento 30, 101 (1981)Google Scholar
  7. 7.
    R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)CrossRefGoogle Scholar
  8. 8.
    P.A.M. Dirac, Physikalische Zeitschrift der Sowjetunion Band 3, Heft 1 (1933), reprinted in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, New York 1958), p. 312; see also [11], Chapter V, Sect. 32Google Scholar
  9. 9.
    R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals (McGraw Hill, New York 1965); C. Grosche, F. Steiner, Handbook of path integrals, Springer Tracts in Modern Physics (Springer-Verlag, Berlin 1998)Google Scholar
  10. 10.
    W. Heisenberg, The physical principals of the quantum theory, English translation by C. Eckart, F.C. Hoyt (University of Chicago Press, Chicago 1930), Chapter IV, Sect. 2Google Scholar
  11. 11.
    P.A.M. Dirac, The principles of quantum mechanics, Fourth edition (O.U.P., London 1958), p. 9Google Scholar
  12. 12.
    R.P. Feynman, Phys. Rev. 76, 749 (1949)CrossRefMATHGoogle Scholar
  13. 13.
    S. Mohanty, Covariant Treatment of Flavour Oscillations, hep-ph/9702424Google Scholar
  14. 14.
    C. Athanassopoulos et al. , Phys. Rev. C 58, 2489 (1998); A. Aguilar et al. , hep-ex/0104049CrossRefGoogle Scholar
  15. 15.
    B. Zeitnitz et al. , Progress in Particle and Nuclear Physics, 40, 169 (1998); J. Kleinfeller, Nucl. Phys. B (Proc. Suppl.) 87, 281 (2000)Google Scholar
  16. 16.
    Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)MATHGoogle Scholar
  17. 17.
    L.I. Schiff, Quantum mechanics, 2nd edition (McGraw Hill, New York 1955), Chapter VIIIGoogle Scholar
  18. 18.
    J.M.Lévy-Leblond, F. Balibar, Quantics, rudiments of quantum physics (North-Holland, Amsterdam 1990), Chapter VGoogle Scholar
  19. 19.
    M. Zralek, Acta. Phys. Polon. B 29, 3925 (1998)Google Scholar
  20. 20.
    C. Giunti, C.W. Kim, Found. Phys. Lett. 14, 213 (2001)CrossRefGoogle Scholar
  21. 21.
    B. Kayser, Neutrino Physics as Explored by Flavour Change, in Phys. Rev. D 66, 010001 (2002) (Review of Particle Properties)CrossRefGoogle Scholar
  22. 22.
    R.E. Shrock, Phys. Lett. B 96, 159 (1980)CrossRefGoogle Scholar
  23. 23.
    R.E. Shrock, Phys. Rev. D 24, 1232 (1981); D 24, 1275 (1981)CrossRefGoogle Scholar
  24. 24.
    J.H. Field, Lepton Flavour Eigenstates do not Exist if Neutrinos are Massive: “Neutrino Oscillations” Reconsidered, hep-ph/0301231Google Scholar
  25. 25.
    J.H. Field, Eur. Phys. J. C 30, 305 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Giunti, C.W. Kim, U.W. Lee, Phys. Rev. D 45, 2414 (1992)CrossRefGoogle Scholar
  27. 27.
    V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)CrossRefGoogle Scholar
  28. 28.
    S.M. Bilenky, B. Pontecorvo, Phys. Lett. B 61, 248 (1976)CrossRefGoogle Scholar
  29. 29.
    H. Fritsch, P. Minkowski, Phys. Lett. B 62, 72 (1976)CrossRefGoogle Scholar
  30. 30.
    S.M. Bilenky, B. Pontecorvo, Lettere al Nuovo Cimento 17, 569 (1976)Google Scholar
  31. 31.
    S.M. Bilenky, B. Pontecorvo, Physics Reports 41, 225 (1978)CrossRefGoogle Scholar
  32. 32.
    See [10], Chapter IIGoogle Scholar
  33. 33.
    B. Kayser, Phys. Rev. D 24, 110 (1981)CrossRefGoogle Scholar
  34. 34.
    Y.N. Srivastava, A. Widom, E. Sassaroli, Charged Lepton Oscillations, hep-ph/9509261Google Scholar
  35. 35.
    Y.N. Srivastava, A. Widom, E. Sassaroli, Eur. Phys. J C 2, 769 (1998)CrossRefMATHGoogle Scholar
  36. 36.
    A.D. Dolgov et al. , Nucl. Phys. B 502, 3 (1997)CrossRefGoogle Scholar
  37. 37.
    Y.N. Srivastava, A. Widom, Of Course Muons can Oscillate, hep-ph/9707268Google Scholar
  38. 38.
    B. Kayser, L. Stodolsky, Phys. Lett. B 359, 343 (1995)CrossRefGoogle Scholar
  39. 39.
    Y.N. Srivastava, A. Widom, E. Sassaroli, Phys. Lett. B 344, 436 (1995)CrossRefGoogle Scholar
  40. 40.
    Review of Particle Properties, D.E. Groom et al. , Eur. Phys. J C 15, 1 (2000)Google Scholar
  41. 41.
    S. DeLeo, P. Rotelli, JETP Lett. 76, 56 (2002)CrossRefGoogle Scholar
  42. 42.
    T. Kajita, Y. Totsuka, Rev. Mod. Phys. 73, 85 (2001)CrossRefGoogle Scholar
  43. 43.
    J.N. Bahcall, M.H. Pinsonneault, S. Basu, Astrophys. J 555, 990 (2001)CrossRefGoogle Scholar
  44. 44.
    H.G. Berry, J.L. Subtil, Phys. Rev. Lett. 27, 1103 (1971)CrossRefGoogle Scholar
  45. 45.
    C. Blondel, C. Delsart, F. Dulieu, Phys. Rev. Lett. 77, 3755 (1996)CrossRefGoogle Scholar
  46. 46.
    C. Bracher et al. , Am. J. Phys. 66, 38 (1998)Google Scholar
  47. 47.
    C. Blondel, S. Berge, C. Delsart, Am. J. Phys. 69, 810 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • J. H. Field
    • 1
  1. 1.Département de Physique Nucléaire et CorpusculaireUniversité de GenéveGenéve 4Switzerland

Personalised recommendations