Advertisement

The rare \(\bar{B}^0_{d} \to \phi\gamma\) decays in the standard model and as a probe of R-parity violation

  • Y. D. Yang
theoretical physics

Abstract.

We present a first study of the rare annihilation decay \(\bar{B}^0_d \to \phi\gamma\) in the standard model. Using the QCD factorization formalism, we find \({\cal B}(\bar{B}^0_d \to\phi\gamma ) = 3.6\times 10^{-12}\). The smallness of the decay rate in the standard model makes the decay a sensitive probe of new physics contributions. As an example, we calculate the effects of R-parity violating couplings. Within the available upper bounds for \(\smash{\vert\lambda^{"}_{i23}\lambda^{"*}_{i12}\vert}\) and \(\smash{\vert\lambda^{'}_{i32}\lambda^{'*}_{i12}\vert}\), \(\smash{{\cal B}(\bar{B}^0_d \to\phi\gamma )}\) could be enhanced to the order of \(10^{-9}\sim 10^{-8}\), which might be accessible at LHCB, B-TeV and the planned super high luminosity B factories at KEK and SLAC.

Keywords

Factorization Formalism Decay Rate High Luminosity Physic Contribution Annihilation Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.E. Coan et al. , CLEO Collaboration, Phys. Rev. Lett. 84, 5283 (2000)CrossRefGoogle Scholar
  2. 2.
    G.P. Korchemsky, D. Pirjol, T.M. Yan, Phys. Rev. D 61, 114510 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Descotes-Genon, C.T. Sachrajda, Nucl. Phys. B 650, 356 (2003), hep-ph/0209216CrossRefGoogle Scholar
  4. 4.
    E. Lunghi, D. Pirjol, D. Wyler, Nucl. Phys. B 649, 349 (2003), hep-ph/0210091CrossRefGoogle Scholar
  5. 5.
    P. Ball, E. Kou, JHEP 0304, 029 (2003), hep-ph/0301135CrossRefGoogle Scholar
  6. 6.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B 579, 313 (2000)CrossRefGoogle Scholar
  7. 7.
    S.W. Bosch, G. Buchalla, Nucl. Phys. B 621, 459 (2000)CrossRefGoogle Scholar
  8. 8.
    For reviews see G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996)CrossRefGoogle Scholar
  9. 9.
    P. Ball, V.M. Braun, Y. Koike, K. Tanaka, Nucl. Phys. B 529, 323 (1998)CrossRefGoogle Scholar
  10. 10.
    A.G. Grozin, M. Neubert, Phys. Rev. D 55, 272 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Beneke, F. Feldmann, Nucl. Phys. B 592, 3 (2001)CrossRefGoogle Scholar
  12. 12.
    For reviews see H.P. Nilles, Phys. Rept. 110, 1 (1984); H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985); J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986)CrossRefGoogle Scholar
  13. 13.
    G. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978)CrossRefGoogle Scholar
  14. 14.
    R. Barbier et al. , hep-ph/9810232, and references thereinGoogle Scholar
  15. 15.
    S. Weiberg, Phys. Rev. D 26, 287 (1982); N. Sakai, T. Yanagida, Nucl. Phys. B 197, 533 (1982)CrossRefGoogle Scholar
  16. 16.
    I. Hinchliffe, T. Kaeding, Phys. Rev. D 47, 279 (1993)CrossRefGoogle Scholar
  17. 17.
    A.Y. Smirnov, F. Vissani, Phys. Lett. B 380, 317 (1996)CrossRefGoogle Scholar
  18. 18.
    Shaouly Bar-Shalom, Gad Eilam, Ya-Dong Yang, Phys. Rev. D 67, 014007 (2003)CrossRefGoogle Scholar
  19. 19.
    D.K. Ghosh, X.G. He, H.J. McKellar, J.Q. Shi, J. High Energy Phys. 07, 067 (2002)CrossRefGoogle Scholar
  20. 20.
    C. Allanach, A. Dedes, H.K. Dreiner, Phys. Rev. D 60, 075014 (1999) and references thereinCrossRefGoogle Scholar
  21. 21.
    M. Gronau, Y. Grossman, D. Pirjol, A. Ryd, Phys. Rev. Lett. 88, 051802 (2002); M. Gronau, D. Pirjol, Phys. Rev. D 66, 054008 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsHenan Normal UniversityP.R. China

Personalised recommendations