Statistical hadronization and hadronic microcanonical ensemble I

  • F. Becattini
  • L. Ferroni
theoretical physics


We present a full treatment of the microcanonical ensemble of the ideal hadron-resonance gas starting from a quantum-mechanical formulation which is appropriate for the statistical model of hadronization. By using a suitable transition operator for hadronization we are able to recover the results of the statistical theory, particularly the expressions of the rates of different channels. Explicit formulae are obtained for the phase space volume or density of states of the ideal relativistic gas in quantum statistics as a cluster decomposition, generalizing previous ones in the literature. The problem of the computation of averages in the hadron gas microcanonical ensemble and the comparison with canonical ones will be the main subject of a forthcoming second paper.


Statistical Model Phase Space Quantum Statistic Statistical Theory Transition Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Becattini, Z. Phys. C 69, 485 (1996); F. Becattini, Proceedings of XXXIII Eloisatron Workshop on Universality Features in Multihadron Production and the leading effect (1996) 74, hep-ph 9701275; F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997)CrossRefGoogle Scholar
  2. 2.
    U. Heinz, Nucl. Phys. A 661, 140 (1999); R. Stock, Phys. Lett. B 456, 277 (1999); J. Hormuzdiar et al. , McGill preprint MCGILL-00-04, OITS-686, nucl-th/0001044; H. Satz, Nucl. Phys. Proc. Suppl. 94, 204 (2001); V. Koch, Proceedings of Quark Matter 2002, Nantes, France, 18-24 July 2002, nucl-th/0210070CrossRefGoogle Scholar
  3. 3.
    F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997); U. Heinz, Nucl. Phys. A 661, 140 (1999); R. Stock, Phys. Lett. B 456, 277 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Stock, hep-ph/0212287Google Scholar
  5. 5.
    K. Werner, J. Aichelin, Phys. Rev. C 52, 1584 (1995)CrossRefGoogle Scholar
  6. 6.
    F.M. Liu, K. Werner, J. Aichelin, Phys. Rev. C 68, 024905 (2003)CrossRefGoogle Scholar
  7. 7.
    F. Becattini, G. Passaleva, Eur. Phys. J. C 23, 551 (2002)CrossRefGoogle Scholar
  8. 8.
    E. Fermi, Progr. Th. Phys. 5, 570 (1950)MathSciNetGoogle Scholar
  9. 9.
    R. Hagedorn, N. Cim. 15, 434 (1960)Google Scholar
  10. 10.
    F. Cerulus, N. Cim. 22, 958 (1961)Google Scholar
  11. 11.
    M. Chaichian, R. Hagedorn, M. Hayashi, Nucl. Phys. B 92, 445 (1975)Google Scholar
  12. 12.
    F. Becattini, L. Ferroni, Statistical hadronization and hadronic microcanonical ensemble II, in preparationGoogle Scholar
  13. 13.
    A. Chodos et al. , Phys. Rev. D 9, 3471 (1974)CrossRefGoogle Scholar
  14. 14.
    G. Marchesini, B.R. Webber et al. , Comp. Phys. Comm. 67, 465 (1992).CrossRefGoogle Scholar
  15. 15.
    R. Hagedorn, CERN lectures Thermodynamics of strong interactions (1970); R. Hagedorn, CERN-TH 7190/94, in Hot Hadronic Matter (1994) 13Google Scholar
  16. 16.
    W. Blumel, P. Koch, U. Heinz, Z. Phys. C 63, 637 (1994)Google Scholar
  17. 17.
    H. Weyl, The theory of groups and quantum mechanicsGoogle Scholar
  18. 18.
    D.H. Gross, Eur. Phys. J. B 15, 115 (2000) and references thereinCrossRefGoogle Scholar
  19. 19.
    J.V. Lepore, R.N. Stuart, Phys. Rev. 94, 1724 (1954)CrossRefMATHGoogle Scholar
  20. 20.
    R. Milburn, Rev. Mod. Phys. 27, 1 (1955) and references therein; S. Belenkij et al. , Usp. Fiz. Nauk. 62, 1 (1957) and references therein; G. Fialho, Phys. Rev. 105, 328 (1957)CrossRefMATHGoogle Scholar
  21. 21.
    F. Cerulus, R. Hagedorn, Suppl. N. Cim. IX, serie X, 2, 646 (1958)Google Scholar
  22. 22.
    W.K. Tung, Group theory in physics (World Scientific, Singapore); W. Ruhl, The Lorentz group and harmonic analysis (A. Benjamin, New York 1970)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • F. Becattini
    • 1
  • L. Ferroni
    • 1
  1. 1.Universitá di Firenze and INFN Sezione di FirenzeFlorenceItaly

Personalised recommendations