Skip to main content
Log in

Geometric phase for mixed states: a differential geometric approach

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

A new definition and interpretation of the geometric phase for mixed state cyclic unitary evolution in quantum mechanics are presented. The pure state case is formulated in a framework involving three selected principal fiber bundles, and the well-known Kostant-Kirillov-Souriau symplectic structure on (co-) adjoint orbits associated with Lie groups. It is shown that this framework generalizes in a natural and simple manner to the mixed state case. For simplicity, only the case of rank two mixed state density matrices is considered in detail. The extensions of the ideas of null phase curves and Pancharatnam lifts from pure to mixed states are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Berry, Proc. Roy. Soc. A 392, 45 (1984). Many of the early papers on geometric phase have been reprinted in Geometric Phases in Physics, edited by A. Shapere, F. Wilczek, (World Scientific, Singapore 1989) and in Fundamentals of Quantum Optics, SPIE Milestone Series, edited by G.S. Agarwal (SPIE Press, Bellington 1995)

    MathSciNet  Google Scholar 

  2. Y. Aharanov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

    Article  Google Scholar 

  3. J. Samuel, R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988)

    Article  MathSciNet  Google Scholar 

  4. N. Mukunda, R. Simon, Ann. Phys. (NY) 228, 205 (1993); 228, 269 (1993)

    Article  MATH  Google Scholar 

  5. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)

    Article  MathSciNet  Google Scholar 

  6. A. Uhlmann, Rep. Math. Phys. 24, 229 (1986); 36, 461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Sjöqvist, A.K. Pati, A. Ekert, J.S. Anandan, M. Ericsson, D.K. Loi, V. Vedral, Phys. Rev. Lett. 85, 2845 (2000)

    Article  Google Scholar 

  8. L. Dabrowski, A. Jadczyk, J. Phys. A 22, 3167 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.A. Kirillov, Bull. Am. Math. Soc. 36, 433 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, Int. J. Mod. Phys. A 16, 5007 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.P. Balachandran, G. Marmo, B.-S. Skagerstam, A. Stern, Gauge symmetry and fibre bundles - Applications to particle dynamics (Springer, Berlin 1983)

  12. A.P. Balachandran, G. Marmo, B.-S. Skagerstam, A. Stern, Classical topology and quantum states (World Scientific, Singapore 1991)

  13. E.M. Rabei, Arvind, N. Mukunda, R. Simon, Phys. Rev. A 60, 3397 (1999)

    Article  MathSciNet  Google Scholar 

  14. N. Mukunda, Arvind, E. Ercolessi, G. Marmo, G. Morandi, R. Simon, Phys. Rev. A 67, 042114 (2003)

    Article  Google Scholar 

  15. Y. Choquet-Bruhat, C. Dewitt-Morette, M. Dillard-Bleick, Analysis, manifolds and physics - Part 1: Basics, revised edition (North Holland, Amsterdam 1991)

  16. S. Kobayashi, K. Nomizu, Foundations of differential geometry (Interscience, New York 1969)

  17. C. Nash, S. Sen, Topology and geometry for physicists (Academic Press, 1983)

  18. N. Mukunda, Geometrical methods for physics in geometry, fields and cosmology, edited by B.R. Iyer, C.V. Vishveshwara (Kluwer, Dordrecht 1997)

  19. V.I. Arnold, Mathematical methods of classical mechanics (Springer, Berlin 1978), Appendices 2 and 5

  20. M.A. Nielsen, Phys. Rev. A 62, 052308 (2000)

    Article  Google Scholar 

  21. F. Pistolesi, N. Manini, Phys. Rev. Lett. 85, 1585 (2000); 85, 3067 (2000)

    Article  Google Scholar 

  22. N. Mukunda, Arvind, S. Chaturvedi, R. Simon, Phys. Rev. A 65, 012102 (2001)

    Article  Google Scholar 

  23. F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, S., Ercolessi, E., Marmo, G. et al. Geometric phase for mixed states: a differential geometric approach. Eur. Phys. J. C 35, 413–423 (2004). https://doi.org/10.1140/epjc/s2004-01814-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01814-5

Keywords

Navigation