Reduction method for dimensionally regulatedone-loop N-point Feynman integrals

theoretical physics


We present a systematic method for reducing an arbitrary one-loop N-point massless Feynman integral with generic 4-dimensional momenta to a set comprised of eight fundamental scalar integrals: six box integrals in D = 6, a triangle integral in D = 4, and a general two-point integral in D space-time dimensions. All the divergences present in the original integral are contained in the general two-point integral and associated coefficients. The problem of vanishing of the kinematic determinants has been solved in an elegant and transparent manner. Being derived with no restrictions regarding the external momenta, the method is completely general and applicable for arbitrary kinematics. In particular, it applies to the integrals in which the set of external momenta contains subsets comprised of two or more collinear momenta, which are unavoidable when calculating one-loop contributions to the hard-scattering amplitude for exclusive hadronic processes at large-momentum transfer in PQCD. The iterative structure makes it easy to implement the formalism in an algebraic computer program.


Computer Program Reduction Method Systematic Method Scalar Integral External Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1979); G.J. van Oldenborgh, J.A.M. Vermaseren, Z. Phys. C 46, 425 (1990); W.L. van Neerven, J.A.M. Vermaseren, Phys. Lett. B 137, 241 (1984)CrossRefGoogle Scholar
  2. 2.
    A.I. Davydychev, Phys. Lett. B 263, 107 (1991)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Lett. B 302, 299 (1993) [Erratum B 318, 649 (1993)] [hep-ph/9212308]MathSciNetGoogle Scholar
  4. 4.
    Z. Bern, L.J. Dixon, D.A. Kosower, Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240]CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    O.V. Tarasov, Phys. Rev. D 54, 6479 (1996) [hep-th/9606018]CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    J. Fleischer, F. Jegerlehner, O.V. Tarasov, Nucl. Phys. B 566, 423 (2000) [hep-ph/9907327]CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    T. Binoth, J.P. Guillet, G. Heinrich, Nucl. Phys. B 572, 361 (2000) [hep-ph/9911342]; G. Heinrich, T. Binoth, Nucl. Phys. Proc. Suppl. 89, 246 (2000) [hep-ph/0005324]CrossRefGoogle Scholar
  8. 8.
    T. Binoth, J.P. Guillet, G. Heinrich, C. Schubert, Nucl. Phys. B 615, 385 (2001) [hep-ph/0106243]CrossRefMATHGoogle Scholar
  9. 9.
    J.M. Campbell, E.W. Glover, D.J. Miller, Nucl. Phys. B 498, 397 (1997) [hep-ph/9612413]CrossRefGoogle Scholar
  10. 10.
    A. Denner, S. Dittmaier, Nucl. Phys. B 658, 175 (2003) [hep-ph/0212259]CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    G. Duplanči\’ c, B. Niži\’ c, Eur. Phys. J. C 20, 357 (2001) [hep-ph/0006249]Google Scholar
  12. 12.
    G. Duplanči\’ c, B. Niži\’ c, Eur. Phys. J. C 24, 385 (2002) [hep-ph/0201306]Google Scholar
  13. 13.
    A.I. Davydychev, J. Phys. A 25, 5587 (1992)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981); F.V. Tkachov, Phys. Lett. B 100, 65 (1981)CrossRefGoogle Scholar
  15. 15.
    F. Jegerlehner, O. Tarasov, Nucl. Phys. Proc. Suppl. 116, 83 (2003) [hep-ph/0212004]CrossRefGoogle Scholar
  16. 16.
    A.T. Suzuki, E.S. Santos, A.G. Schmidt, Eur. Phys. J. C 26, 125 (2002) [hep-th/0205158]CrossRefGoogle Scholar
  17. 17.
    C. Anastasiou, E.W. Glover, C. Oleari, Nucl. Phys. B 565, 445 (2000) [hep-ph/9907523]; A.T. Suzuki, E.S. Santos, A.G. Schmidt, hep-ph/0210083CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations