Perspectives for the study of charm in-medium quenchingat the LHC with ALICE

experimental physics

Abstract.

Charm mesons produced in nucleus-nucleus collisions are expected to be less attenuated (quenched) by the medium than hadrons containing only light quarks, since radiative energy loss of heavy quarks should be reduced by the ‘dead-cone’ effect. We start from a published energy-loss model to derive the quenching for D mesons at the LHC, introducing an approximation of the dead-cone effect and employing a Glauber-based description of the geometry of central Pb-Pb collisions to estimate the in-medium path lengths of c quarks. We show that the exclusive reconstruction of \({\rm D}^0\to{\rm K\pi}^ + \) decays in ALICE allows to measure the nuclear modification factor of the D mesons transverse momentum distribution and the D/charged hadrons ratio and, thus, to investigate the energy loss of c quarks.

Keywords

Energy Loss Path Length Radiative Energy Heavy Quark Momentum Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ALICE Technical Proposal, CERN/LHCC 95-71 (1995)Google Scholar
  2. 2.
    M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994) [arXiv:nucl-th/9306003]CrossRefGoogle Scholar
  3. 3.
    R. Baier, Yu.L. Dokshitzer, A.H. Mueller, S. Peigné, D. Schiff, Nucl. Phys. B 483, 291 (1997) [arXiv:hep-ph/9607355]; Nucl. Phys. B 484, 265 (1997) [arXiv:hep-ph/9608322]CrossRefGoogle Scholar
  4. 4.
    B.G. Zakharov, JETP Lett. 63, 952 (1996) [arXiv:hep-ph/9607440]Google Scholar
  5. 5.
    U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000) [arXiv:hep-ph/0005129]CrossRefGoogle Scholar
  6. 6.
    S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 91, 072301 (2003) [arXiv:nucl-ex/0306021]Google Scholar
  7. 7.
    J. Jia et al., PHENIX Coll., Nucl. Phys. A 715, 769 (2003)c [arXiv:nucl-ex/0209029]CrossRefGoogle Scholar
  8. 8.
    J. Adams et al., STAR Coll., Phys. Rev. Lett. 91, 172302 (2003). [arXiv:nucl-ex/0305015]CrossRefGoogle Scholar
  9. 9.
    C. Adler et al., STAR Coll., Phys. Rev. Lett. 90, 082302 (2003) [arXiv:nucl-ex/0210033]CrossRefGoogle Scholar
  10. 10.
    Yu.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001) [arXiv:hep-ph/0106202]CrossRefGoogle Scholar
  11. 11.
    C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 68, 014008 (2003) [arXiv:hep-ph/0302184]; http://csalgado.home.cern.ch/csalgadoGoogle Scholar
  12. 12.
    M. Gyulassy, P. Lévai, I. Vitev, Nucl. Phys. B 571, 197 (2000) [arXiv:hep-ph/9907461]; Phys. Rev. Lett. 85, 5535 (2000) [arXiv:nucl-th/0005032]; Nucl. Phys. B 594, 371 (2001) [arXiv:nucl-th/0006010]CrossRefGoogle Scholar
  13. 13.
    A. Accardi et al., Hard Probes in Heavy Ion Collisions at the LHC: Jet Physics [arXiv:hep-ph/0310274]Google Scholar
  14. 14.
    M.G. Mustafa, D. Pal, D.K. Srivastava, M.H. Thoma, Phys. Lett. B 428, 234 (1998) [arXiv:nucl-th/9711095]CrossRefGoogle Scholar
  15. 15.
    Z.W. Lin, R. Vogt, Nucl. Phys. B 544, 339 (1999) [arXiv:hep-ph/9808214]CrossRefGoogle Scholar
  16. 16.
    Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan, J. Phys. G 17, 1602 (1991)CrossRefGoogle Scholar
  17. 17.
    K. Adcox et al., PHENIX Coll., Phys. Rev. Lett. 88, 192303 (2002) [arXiv:nucl-ex/0202002]CrossRefGoogle Scholar
  18. 18.
    M. Djordjevic, M. Gyulassy, Phys. Lett. B 560, 37 (2003) [arXiv:nucl-th/0302069]CrossRefGoogle Scholar
  19. 19.
    E. Wang, X.N. Wang, B.W. Zhang [arXiv:nucl-th/0309040]Google Scholar
  20. 20.
    R. Baier, Yu.L. Dokshitzer, A.H. Mueller, D. Schiff, JHEP 0109, 033 (2001) [arXiv:hep-ph/0106347]Google Scholar
  21. 21.
    R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)Google Scholar
  22. 22.
    A. Drees, H. Feng, J. Jia [arXiv:nucl-th/0310044]Google Scholar
  23. 23.
    U.A. Wiedemann, Nucl. Phys. A 690, 731 (2001) [arXiv:hep-ph/0008241]CrossRefGoogle Scholar
  24. 24.
    K.J. Eskola, H. Honkanen, C.A. Salgado, U.A. Wiedemann, work in progressGoogle Scholar
  25. 25.
    T. Sjöstrand et al., Computer Phys. Commun. 135, 238 (2001) [arXiv:hep-ph/0010017]Google Scholar
  26. 26.
    H.L. Lai et al., CTEQ Coll., Phys. Rev. D 55, 1280 (1997) [arXiv:hep-ph/9606399]CrossRefGoogle Scholar
  27. 27.
    B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 582, 514 (2000) [arXiv:hep-ph/0010289]CrossRefGoogle Scholar
  28. 28.
    C.A. Salgado, U.A. Wiedemann, private communicationGoogle Scholar
  29. 29.
    M. Mangano, P. Nason, G. Ridolfi, Nucl. Phys. B 373, 295 (1992)CrossRefGoogle Scholar
  30. 30.
    N. Carrer, A. Dainese, ALICE Internal Note, ALICE-INT-2003-019 (2003) [arXiv:hep-ph/0311225]Google Scholar
  31. 31.
    H.L. Lai et al., CTEQ Coll., Eur. Phys. J. C 12, 375 (2000) [arXiv:hep-ph/9903282]CrossRefGoogle Scholar
  32. 32.
    K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999) [arXiv:hep-ph/9807297]CrossRefGoogle Scholar
  33. 33.
    A. Dainese, Ph.D. Thesis [arXiv:nucl-ex/0311004]Google Scholar
  34. 34.
    N. Carrer, A. Dainese, R. Turrisi, J. Phys. G 29, 575 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Università degli Studi di PadovaPadovaItaly

Personalised recommendations