Skip to main content
Log in

Exclusive \(B \to (K^*, \rho) \gamma\) decays in general two-Higgs-doublet models

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

By employing the QCD factorization approach, we calculated the next-to-leading order new physics contributions to the branching ratios, CP asymmetries, isospin and U-spin symmetry breaking of the exclusive decays \(B \to V \gamma\) (\(V = K^*, \rho\)), induced by the charged Higgs penguins in general two-Higgs-doublet models. Within the considered parameter space, we found that (a) the new physics corrections to the observables are generally small in model I and model III-A, moderate in model II, but large in model III-B; (b) from the well measured branching ratios and upper limits, a lower bound of M H > 200 GeV in model II was obtained, while the allowed range of M H in model III-B is \( 226 \leq M_{H} \leq 293 \) GeV; these bounds are comparable with those from the inclusive \(B \to X_s \gamma\) decay; (c) the NLO Wilson coefficient C 7(m b ) in model III-B is positive and disfavored by the measured value of isospin symmetry breaking \( \Delta_{0-}^{\mathrm{{exp}}} (K^*\gamma) = (3.9 \pm 4.8)\%\), but it still cannot be excluded if we take the large errors into account; (d) the CP asymmetry \(\mathcal{A}_{CP}(B \to \rho \gamma)\) in model III-B has an opposite sign to the one in the standard model (SM), which may be used as a good observable to distinguish the SM from model III-B; (e) the isospin symmetry breaking \( \Delta(\rho\gamma)\) is less than \(10\%\) in the region of \(\gamma = [ 40 \sim 70]^\circ\) preferred by the global fit result, but it can be as large as 20 to \(40\%\) in the regions of \(\gamma \leq 10^\circ\) and \(\gamma \geq 120^\circ\). The SM and model III-B predictions for \( \Delta(\rho\gamma)\) are opposite in sign for small or large values of the CKM angles; (f) the U-spin symmetry breaking \(\Delta U(K^*,\rho)\) in the SM and the general two-Higgs-doublet models is generally small in size: \(\sim 10^{-7}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996)

    Article  Google Scholar 

  2. For recent reviews of rare B decays, see T. Hurth, hep-ph/0212304; M. Battaglia et al., hep-ph/0304132

  3. S.W. Bosch, G. Buchalla, in Proceedings of the Second Workshop on the CKM Unitarity Triangle, IPPP Duram, April 2003, edited by P. Pall, J. Flynn, P. Kluit, A. Stocchi, eConf C0304052:WG203 (2003)

  4. C. Jessop, A world average for \(B \to X_s \gamma\), SLAC-PUB-9610

  5. K.G. Chetyrkin, M. Misiak, M. Munz, Phys. Lett. B 400, 206 (1997); 425, 414(E) (1998)

    Article  Google Scholar 

  6. A.L. Kagan, M. Neubert, Eur. Phys. J. C 7, 5 (1999)

    MATH  Google Scholar 

  7. A.J. Buras, A. Czarnecki, M. Misiak, J. Urban, Nucl. Phys. B 611, 488 (2001); 631, 219 (2002), and references therein

    Article  Google Scholar 

  8. P. Gambino, M. Misiak, Nucl. Phys. B 611, 338 (2001)

    Article  Google Scholar 

  9. For recent developments see C. Greub, talk presented at the EPS-2003, 17-23 July 2003, Aachen, Germany

  10. M. Carena, D. Garcia, U. Nierste, C.E. Wagner, Phys. Lett. B 499, 141 (2001); G. Degrassi, P. Gambino, G.F. Giudice, JHEP 0012, 009 (2000); G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 255 (2002)

    Article  Google Scholar 

  11. F. Borzumati, C. Greub, T. Hurth, D. Wyler, Phys. Rev. D 62, 075005 (2000); T. Besmer, C. Greub, T. Hurth, Nucl. Phys. B 609, 359 (2001)

    Article  Google Scholar 

  12. S. Glashow, S. Weinberg, Phys. Rev. D 15, 1958 (1977); J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, The Higgs hunter’s guide (Addison Wesley, Redwood-City 1990), and references therein

    Article  Google Scholar 

  13. Z.J. Xiao, L.B. Guo, Phys. Rev. D 69, 014002 (2004)

    Article  Google Scholar 

  14. CLEO Collaboration, R. Ammer et al., Phys. Rev. Lett. 71, 674 (1993); T. Coan et al., Phys. Rev. Lett. 84, 5283 (2000)

    Article  Google Scholar 

  15. B. Aubert et al., BaBar Collaboration, Phys. Rev. Lett. 88, 101805 (2002); hep-ex/0306038

    Article  Google Scholar 

  16. K. Abe et al., Belle Collaboration, Measurement of the \(B \to K^* \gamma\) branching fraction and asymmetries, Belle-Conf-0319, EPS-ID 537

  17. For recent developments, see M. Nakao (for Belle, BaBar, CLEO,VDF and D0 Collaborations), Radiative and electroweak rare B decays, talk presented at LP 2003, August 12, 2003

    Google Scholar 

  18. N.G. Deshpande, P. Lo, J. Trampetic, Phys. Rev. Lett. 59, 183 (1987)

    Article  Google Scholar 

  19. C. Greub, H. Simma, D. Wyler, Nucl. Phys. B 434, 39 (1995) [Erratum B 444, 447 (1995)]

    Article  Google Scholar 

  20. H.H. Asatryan, H.M. Asatrian, D. Wyler, Phys. Lett. B 470, 223 (1999)

    Article  Google Scholar 

  21. H.-n. Li, G.L. Lin, Phys. Rev. D 60, 054001 (1999)

    Article  Google Scholar 

  22. M. Beneke, T. Feldmann, D. Seidel, Nucl. Phys. B 612, 25 (2001)

    Article  Google Scholar 

  23. A. Ali, A.Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002)

    Google Scholar 

  24. S.W. Bosch, G. Buchalla, Nucl. Phys. B 621, 459 (2002)

    Article  Google Scholar 

  25. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B 591, 313 (2000); Nucl. Phys. B 606, 245 (2001)

    Article  Google Scholar 

  26. S.W. Bosch, Exclusive Radiative Decays of B Mesons in QCD Factorization, Ph.D. thesis, hep-ph/0208203

  27. A.L. Kagan, M. Neubert, Phys. Lett. B 539, 227 (2002)

    Article  Google Scholar 

  28. A. Ali, T. Handoko, D. London, Phys. Rev. D 63, 014014 (2001); A. Ali, E. Lunghi, Eur. Phys. J. C 26, 195 (2002)

    Article  Google Scholar 

  29. M. Kabayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Google Scholar 

  30. A.J. Buras, M. Misiak, M. Münz, S. Pokorski, Nucl. Phys. B 424, 374 (1994)

    Article  Google Scholar 

  31. Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002) and 2003 partial update for edition 2004 (URL: http://pdg.lbl.gov)

    Article  Google Scholar 

  32. P. Ball, V.M. Braun, Phys. Rev. D 58, 094016 (1998)

    Article  Google Scholar 

  33. D. Becirevic, talk given at the Ringberg Phenomenology Workshop on Heavy Flavors, Ringberg Castle, Tegernsee, Germany, May 2003

  34. D. Atwood, L. Reina, A. Soni, Phys. Rev. D 55, 3156 (1997)

    Article  Google Scholar 

  35. T.P. Cheng, M. Sher, Phys. Rev. D 35, 3484 (1987); M. Sher, Y. Yuan, Phys. Rev. D 44, 1461 (1991); W.S. Hou, Phys. Lett. B 296, 179 (1992); A. Antaramian, L.J. Hall, A. Rasin, Phys. Rev. Lett. 69, 1871 (1992); L.J. Hall, S. Winberg, Phys. Rev. D 48, R979 (1993); D. Chang, W.S. Hou, W.Y. Keung, Phys. Rev. D 48, 217 (1993); Y.L. Wu, L. Wolfenstein, Phys. Rev. Lett. 73, 1762 (1994); D. Atwood, L. Reina, A. Soni, Phys. Rev. Lett. 75, 3800 (1995)

    Article  Google Scholar 

  36. W.S. Hou, R.S. Willey, Phys. Lett. B 202, 59 (1988); S. Bertolini et al., Nucl. Phys. B 353, 591 (1991); C.D. Lü, Nucl. Phys. B 441, 33 (1994)

    Google Scholar 

  37. F.M. Borzumati, C. Greub, Phys. Rev. D 58, 074004 (1998); 59, 057501 (1999) (Addendum)

    Article  Google Scholar 

  38. M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 527, 21 (1998)

    Article  Google Scholar 

  39. P. Ciafaloni, A. Romanino, A. Strumia, Nucl. Phys. B 524, 361 (1998)

    Article  Google Scholar 

  40. T.M. Aliev, E.O. Iltan, J. Phys. G 25, 989 (1999)

    Article  Google Scholar 

  41. D.B. Chao, K. Heung, W.Y. Keung, Phys. Rev. D 59, 115006 (1999)

    Article  Google Scholar 

  42. K. Kirs, A. Soni, G.H. Wu, Phys. Rev. D 59, 096001 (1999); 62, 116004 (2000); G.H. Wu, A. Soni, Phys. Rev. D 62, 056005 (2000)

    Article  Google Scholar 

  43. Z,J. Xiao, C.S. Li, K.T. Chao, Phys. Rev. D 63, 074005 (2001); J.J. Cao, Z.J. Xiao, G.R. Lu, Phys. Rev. D 64, 014012 (2001); D. Zhang, Z.J. Xiao, C.S. Li, Phys. Rev. D 64, 014014 (2001); Z.J. Xiao, K.T. Chao, C.S. Li, Phys. Rev. D 65, 114021 (2002)

    Article  Google Scholar 

  44. P. Gambino, J. Phys. G 27, 1199 (2001)

    Article  Google Scholar 

  45. M. Gronau, J.L. Rosner, Phys. Lett. B 500, 247 (2001); M. Gronau, Phys. Lett. B 492, 297 (2000); T. Hurth, T. Mannel, Phys. Lett. B 511, 196 (2001); R. Fleischer, Phys. Lett. B 459, 306 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Xiao.

Additional information

Received: 9 October 2003, Revised: 11 November 2003, Published online: 18 February 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Zhuang, C. Exclusive \(B \to (K^*, \rho) \gamma\) decays in general two-Higgs-doublet models. Eur. Phys. J. C 33, 349–368 (2004). https://doi.org/10.1140/epjc/s2004-01592-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01592-0

Keywords

Navigation