Quantum-hydrodynamical picture of the massive Higgs boson

  • M. Consoli
  • E. Costanzo
theoretical physics


The phenomenon of spontaneous symmetry breaking admits a physical interpretation in terms of the Bose condensation process of elementary spinless quanta. In this picture, the broken-symmetry phase emerges as a real physical medium, endowed with a hierarchical pattern of scales, supporting two types of elementary excitations for \({\vec{k}} \to 0\): a massive energy branch \(E_a({\vec{k}}) \to M_H\), corresponding to the usual Higgs boson field, and a collective gapless branch \(E_b({\vec{k}}) \to 0\). This is similar to the coexistence of phonons and rotons in superfluid 4He that, in fact, is usually considered the condensed-matter analog of the Higgs condensate. After previous work dedicated to the properties of the gapless phonon branch, in this paper we use quantum hydrodynamics to propose a physical interpretation of the massive branch. On the base of our results, M H coincides with the energy gap for vortex formation and a massive Higgs boson is like a roton in superfluid 4He. Within this interpretation of the Higgs particle, there is no naturalness problem since M H remains a naturally intermediate, fixed energy scale, even for an ultimate ultraviolet cutoff \(\Lambda\to \infty\).


Vortex Higgs Boson Vortex Formation Massive Higgs Boson Spontaneous Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. ‘t Hooft, In search of the ultimate building blocks (Cambridge University Press 1997), p. 70Google Scholar
  2. 2.
    M. Consoli, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Coleman, E. Weinberg, Phys. Rev. D 7, 1888 (1973)Google Scholar
  4. 4.
    M. Consoli, P.M. Stevenson, Mod. Phys. Lett. A 11, 2511 (1996)Google Scholar
  5. 5.
    For a review of rigorous results, see R. Fernández, J. Fröhlich, A. Sokal, Random walks, critical phenomena and triviality in quantum field theory (Springer Verlag 1992)Google Scholar
  6. 6.
    M. Consoli, P.M. Stevenson, Z. Phys. C 63, 427 (1994)Google Scholar
  7. 7.
    M. Consoli, P.M. Stevenson, Phys. Lett. B 391, 144 (1997)CrossRefGoogle Scholar
  8. 8.
    U. Ritschel, Z. Phys. C 63, 345 (1994)Google Scholar
  9. 9.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)CrossRefGoogle Scholar
  10. 10.
    M. Consoli, A. Ciancitto, Nucl. Phys. B 254, 653 (1985)CrossRefGoogle Scholar
  11. 11.
    R. Ibanez-Meier, I. Stancu, P.M. Stevenson, Z. Phys. C 70, 307 (1996)CrossRefGoogle Scholar
  12. 12.
    H. Salehi, H.R. Sepangi, Phys. Lett. A 251, 95 (1999)CrossRefGoogle Scholar
  13. 13.
    G.E. Volovik, JETP Lett. 73, 162 (2001)Google Scholar
  14. 14.
    C.D. Froggatt, H.B. Nielsen, Origin of symmetry (World Scientific 1991)Google Scholar
  15. 15.
    M. Consoli, Phys. Lett. B 541, 307 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Consoli, hep-ph/0306070Google Scholar
  17. 17.
    M. Consoli, A. Pagano, L. Pappalardo, Phys. Lett. A 318, 292 (2003)CrossRefGoogle Scholar
  18. 18.
    M. Consoli, Phys. Lett. B 512, 335 (2001)CrossRefGoogle Scholar
  19. 19.
    M. Consoli, Phys. Rev. D 65, 105217 (2002)CrossRefGoogle Scholar
  20. 20.
    E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics (Pergamon Press Ltd. 1981), p. 11Google Scholar
  21. 21.
    P.M. Stevenson, Are there pressure waves in the vacuum?, contribution to the Conference on Violations of CPT and Lorentz invariance, University of Indiana, August 2001 (World Scientific), hep-ph/0109204Google Scholar
  22. 22.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998), Phys. Rev. D 59, 086004 (1999), I. Antoniadis, hep-ph/9904272CrossRefGoogle Scholar
  23. 23.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical physics, Part 2 (Pergamon Press Ltd. 1980), p. 85Google Scholar
  24. 24.
    G.E. Volovik, Phys. Rep. 351, 195 (2001)CrossRefMathSciNetGoogle Scholar
  25. 25.
    A. Griffin, Excitations in a Bose-condensed liquid (Cambridge University Press, Cambridge 1993), C.J. Pethick, H. Smith, Bose-Einstein condensation in dilute gases (Cambridge University Press, Cambridge 2002)Google Scholar
  26. 26.
    F. Ferrer, J.A. Grifols, Phys. Rev. D 63, 025020 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Agodi, G. Andronico, M. Consoli, Z. Phys. C 66, 439 (1995)Google Scholar
  28. 28.
    A. Agodi et al., Mod. Phys. Lett. A 12, 1001 (1997)Google Scholar
  29. 29.
    S. Weinberg, Gravitation and cosmology (John Wiley and Sons, Inc. 1972), p. 52Google Scholar
  30. 30.
    D.A. Kirshnitz, V.L. Polyachenko, Sov. Phys. JETP 19, 514 (1964)Google Scholar
  31. 31.
    S.A. Bludman, M.A. Ruderman, Phys. Rev. 170, 1176 (1968), M.A. Ruderman, Phys. Rev. 172, 1286 (1968), S.A. Bludman, M.A. Ruderman, Phys. Rev. D 1, 3243 (1970)CrossRefGoogle Scholar
  32. 32.
    B.D. Keister, W.N. Polyzou, Phys. Rev. C 54, 2023 (1996)CrossRefGoogle Scholar
  33. 33.
    M. Born, Ann. der Phys. 30, 1 (1909)MATHGoogle Scholar
  34. 34.
    L.D. Landau, J. Phys. Moscow 5, 71 (1941), 11, 91 (1947)MATHGoogle Scholar
  35. 35.
    J.M. Ziman, Proc. Royal Soc. 219, 257 (1953)MATHGoogle Scholar
  36. 36.
    H. Lamb, Hydrodynamics (Cambridge University Press 1932), p. 248Google Scholar
  37. 37.
    M. Rasetti, T. Regge, Quantum vortices, in Proceedings of the LXXXIX Int. School of Physics E. Fermi, Highlights of Condensed-Matter Theory, edited by F. Bassani, F. Fumi, M.P. Tosi (North-Holland 1985), p. 748Google Scholar
  38. 38.
    R. Jackiw, S.-Y. Pi, A. Polychronakos, Ann. Phys. 301, 157 (2002)CrossRefMATHGoogle Scholar
  39. 39.
    H.A. Bethe, Phys. Rev. 72, 241 (1947)CrossRefGoogle Scholar
  40. 40.
    T.A. Welton, Phys. Rev. 74, 1157 (1948), J.D. Bjorken, S.D. Drell, Relativistic quantum mechanics (McGraw-Hill Inc. 1964), p. 59-60CrossRefMATHGoogle Scholar
  41. 41.
    R.K. Pathria, Supp. N. Cimento IV, 276 (1966)Google Scholar
  42. 42.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical physics, Part 2 (Pergamon Press Ltd. 1980), p. 117-118Google Scholar
  43. 43.
    T.D. Lee, C.N. Yang, K. Huang, Phys. Rev. 106, 1135 (1957)CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    D.R. Tilley, J. Tilley, Superfluidity and superconductivity, Second edition (Adam Hilger Ltd., Bristol and Boston, 1986) p. 44Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. Consoli
    • 1
  • E. Costanzo
    • 1
  1. 1.Istituto Nazionale di Fisica NucleareSezione di CataniaCataniaItaly

Personalised recommendations