Advertisement

The origin of the first and third generation fermion massesin a technicolor scenario

  • A. Doff
  • A. A. Natale
theoretical physics

Abstract.

We argue that the masses of the first and third fermionic generations, which are respectively of the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism leading to masses of the order \(\alpha \mu\), where \(\alpha\) is a small coupling constant, and μ, in the case of the first fermionic generation, is the scale of the dynamical quark mass (\(\approx 250\) MeV). For the third fermion generation μ is the value of the dynamical techniquark mass (\(\approx 250\) GeV). We discuss how this possibility can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated.

Keywords

Symmetry Breaking Quark Mass Dynamical Symmetry Small Coupling Breaking Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fritzsch, Nucl. Phys. B 155, 189 (1979)CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Phys. Rev. D 13, 974, (1976)CrossRefGoogle Scholar
  3. 3.
    C.T. Hill, E.H. Simmons, Phys. Rept. 581, 235 (2003)Google Scholar
  4. 4.
    S. Dimopoulos, L. Susskind, Nucl. Phys. B 155, 237 (1979)CrossRefGoogle Scholar
  5. 5.
    F. Maltoni, J.M. Niczyporuk, S. Willenbrock, Phys. Rev. D 65, 033004 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Doff, A.A. Natale, Phys. Lett. B 537, 275 (2002)CrossRefGoogle Scholar
  7. 7.
    K. Lane, Phys. Rev. D 10, 2605 (1974)CrossRefGoogle Scholar
  8. 8.
    J.D. Carpenter, R.E. Norton, A. Soni, Phys. Lett. B 212, 63 (1988)CrossRefGoogle Scholar
  9. 9.
    J. Carpenter, R. Norton, S. Siegemund-Broka, A. Soni, Phys. Rev. Lett. 65, 153 (1990)CrossRefGoogle Scholar
  10. 10.
    H.D. Politzer, Nucl. Phys. B 117, 397 (1976)CrossRefGoogle Scholar
  11. 11.
    B. Holdom, Phys. Rev. D 24, 1441 (1981)CrossRefGoogle Scholar
  12. 12.
    P. Langacker, Phys. Rev. Lett. 34, 1592 (1975)CrossRefGoogle Scholar
  13. 13.
    R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    A.C. Aguilar, A.A. Natale, P.S. Rodrigues da Silva, Phys. Rev. Lett. 90, 152001 (2003)CrossRefGoogle Scholar
  15. 15.
    J.C. Montero, A.A. Natale, P.S. Rodrigues da Silva, Prog. Theor. Phys. 96, 1209 (1996)Google Scholar
  16. 16.
    Ph. Boucaud, Phys. Lett. B 493, 315 (2000)CrossRefGoogle Scholar
  17. 17.
    Paul H. Frampton, Phys. Rev. Lett. 43, 1912 (1979)CrossRefGoogle Scholar
  18. 18.
    H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)CrossRefGoogle Scholar
  19. 19.
    A.A. Natale, Z. Phys. C 21, 273 (1984)Google Scholar
  20. 20.
    J.M. Cornwall, Phys. Rev. D 10, 500 (1974)CrossRefGoogle Scholar
  21. 21.
    G. B Gelmini, J.M. Gérard, T. Yanagida, G. Zoupanos, Phys. Lett. B 135, 103 (1984)CrossRefGoogle Scholar
  22. 22.
    H. Georgi, Nucl. Phys. B 156, 126 (1979)CrossRefMathSciNetGoogle Scholar
  23. 23.
    S.M. Barr, A. Zee, Phys. Rev. D 17, 1854 (1978)CrossRefGoogle Scholar
  24. 24.
    S. Raby, Nucl. Phys. B 187, 446 (1981)CrossRefGoogle Scholar
  25. 25.
    S. Dimopoulos, Nucl. Phys. B 168, 69 (1980)CrossRefGoogle Scholar
  26. 26.
    S. Dimopoulos, S. Raby, P. Sikivie, Nucl. Phys. B 176, 449 (1980)CrossRefGoogle Scholar
  27. 27.
    B. Machet, A.A. Natale, Ann. Phys. 160, 114 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. Doff
    • 1
  • A. A. Natale
    • 1
  1. 1.Instituto de Física TeóricaUNESPSão PauloSP, Brazil

Personalised recommendations