Jet production in charged current deep inelastic e + p scatteringat HERA

  • The ZEUS Collaboration
experimental physics

Abstract.

The production rates and substructure of jets have been studied in charged current deep inelastic e + p scattering for Q 2 > 200 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb-1. Inclusive jet cross sections are presented for jets with transverse energies \(E_T^{\rm jet} > 14\) GeV and pseudorapidities in the range \(-1 < \eta^{\rm jet} < 2\). Dijet cross sections are presented for events with a jet having \(E_T^{\rm jet} > 14\) GeV and a second jet having \(E_T^{\rm jet} > 5\) GeV. Measurements of the mean subjet multiplicity, \(\langle n_{\rm sbj}\rangle\), of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of \(\alpha_s(M_Z)\), determined from \(\langle n_{\rm sbj}\rangle\) at \(y_{\rm cut} = 10^{-2}\) for jets with \(25 < E_T^{\rm jet} < 119\) GeV, is \(\alpha_s(M_Z) = 0.1202 \pm 0.0052 ({\rm stat.}) ^{ + 0.0060}_{-0.0019} ({\rm syst.}) ^{ + 0.0065}_{-0.0053} ({\rm th.})\). The mean subjet multiplicity as a function of Q 2 is found to be consistent with that measured in NC DIS.

Keywords

Production Rate Transverse Energy Integrate Luminosity Monte Carlo Model Dijet Cross Section 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H1 Collaboration, T. Ahmed, Phys. Lett. B 324, 241 (1994)CrossRefGoogle Scholar
  2. 2.
    ZEUS Collaboration, M. Derrick, Phys. Rev. Lett. 75, 1006 (1995)CrossRefGoogle Scholar
  3. 3.
    H1 Collaboration, S. Aid, Z. Phys. C 67, 565 (1995)Google Scholar
  4. 4.
    H1 Collaboration, S. Aid, Phys. Lett. B 379, 319 (1996)CrossRefGoogle Scholar
  5. 5.
    ZEUS Collaboration, M. Derrick, Z. Phys. C 72, 47 (1996)CrossRefGoogle Scholar
  6. 6.
    ZEUS Collaboration, J. Breitweg, Eur. Phys. J. C 12, 411 (2000)CrossRefGoogle Scholar
  7. 7.
    ZEUS Collaboration, S. Chekanov, Phys. Lett. B 539, 197 (2002)CrossRefGoogle Scholar
  8. 8.
    H1 Collaboration, C. Adloff, Eur. Phys. J. C 13, 609 (2000)CrossRefGoogle Scholar
  9. 9.
    H1 Collaboration, C. Adloff, Eur. Phys. J. C 19, 269 (2001)Google Scholar
  10. 10.
    H1 Collaboration, C. Adloff, Eur. Phys. J. C 19, 429 (2001)Google Scholar
  11. 11.
    ZEUS Collaboration, J. Breitweg, Eur. Phys. J. C 8, 367 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Catani, Nucl. Phys. B 383, 419 (1992)CrossRefGoogle Scholar
  13. 13.
    M.H. Seymour, Phys. Lett. B 378, 279 (1996)CrossRefGoogle Scholar
  14. 14.
    M.H. Seymour, Nucl. Phys. B 421, 545 (1994)CrossRefGoogle Scholar
  15. 15.
    J.R. Forshaw and M.H. Seymour, JHEP 9909, 009 (1999)Google Scholar
  16. 16.
    S. Catani, Nucl. Phys. B 406, 187 (1993)CrossRefGoogle Scholar
  17. 17.
    J.G. Körner, E. Mirkes and G.A. Schuler, Int. J. Mod. Phys. A 4, 1781 (1989)Google Scholar
  18. 18.
    ZEUS Collaboration, S. Chekanov, Phys. Lett. B 558, 41 (2003)CrossRefGoogle Scholar
  19. 19.
    ZEUS Collaboration, U. Holm (ed.), The ZEUS Detector. Status Report (unpublished), DESY (1993), available on http://www-zeus.desy.de/bluebook/bluebook.htmlGoogle Scholar
  20. 20.
    N. Harnew, Nucl. Instr. and Meth. A 279, 290 (1989)CrossRefGoogle Scholar
  21. 21.
    B. Foster, Nucl. Phys. Proc. Suppl. B 32, 181 (1993)CrossRefGoogle Scholar
  22. 22.
    B. Foster, Nucl. Instr. and Meth. A 338, 254 (1994)CrossRefGoogle Scholar
  23. 23.
    M. Derrick, Nucl. Instr. and Meth. A 309, 77 (1991)CrossRefGoogle Scholar
  24. 24.
    A. Andresen, Nucl. Instr. and Meth. A 309, 101 (1991)CrossRefGoogle Scholar
  25. 25.
    A. Caldwell, Nucl. Instr. and Meth. A 321, 356 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Bernstein, Nucl. Instr. and Meth. A 336, 23 (1993)CrossRefGoogle Scholar
  27. 27.
    W.H. Smith, K. Tokushuku and L.W. Wiggers, Proc. Computing in High-Energy Physics (CHEP), Annecy, France, Sept. 1992, C. Verkerk and W. Wojcik (eds.), p. 222. CERN (1992)Google Scholar
  28. 28.
    J. Andruszków, Preprint DESY-92-066, DESY, 1992Google Scholar
  29. 29.
    ZEUS Collaboration, M. Derrick, Z. Phys. C 63, 391 (1994)Google Scholar
  30. 30.
    J. Andruszków, Acta Phys. Pol. B 32, 2025 (2001)Google Scholar
  31. 31.
    F. Jacquet and A. Blondel, Proc. of the Study of an ep Facility for Europe, U. Amaldi (ed.), p. 391. Hamburg, Germany (1979)Google Scholar
  32. 32.
    S.D. Ellis and D.E. Soper, Phys. Rev. D 48, 3160 (1993)CrossRefGoogle Scholar
  33. 33.
    J.E. Huth, Research Directions for the Decade. Proc. of Summer Study on High Energy Physics, 1990, E.L. Berger (ed.), p. 134. World Scientific (1992)Google Scholar
  34. 34.
    G. Ingelman, A. Edin and J. Rathsman, Comp. Phys. Comm. 101, 108 (1997)CrossRefGoogle Scholar
  35. 35.
    A. Kwiatkowski, H. Spiesberger and H.-J. Möhring, Comp. Phys. Comm. 69, 155 (1992)CrossRefGoogle Scholar
  36. 36.
    H. Spiesberger, An Event Generator for ep Interactions at HERA Including Radiative Processes (Version 4.6), 1996, available on http://www.desy.de/126 hspiesb/heracles.htmlGoogle Scholar
  37. 37.
    K. Charchula, G.A. Schuler and H. Spiesberger, Comp. Phys. Comm. 81, 381 (1994)CrossRefGoogle Scholar
  38. 38.
    H. Spiesberger, heracles and djangoh: Event Generation for ep Interactions at HERA Including Radiative Processes, 1998, available on http://www.desy.de/126 hspiesb/ djangoh.htmlGoogle Scholar
  39. 39.
    H.L. Lai, Phys. Rev. D 55, 1280 (1997)CrossRefGoogle Scholar
  40. 40.
    Y. Azimov, Phys. Lett. B 165, 147 (1985)CrossRefGoogle Scholar
  41. 41.
    G. Gustafson, Phys. Lett. B 175, 453 (1986)CrossRefGoogle Scholar
  42. 42.
    G. Gustafson and U. Pettersson, Nucl. Phys. B 306, 746 (1988)CrossRefGoogle Scholar
  43. 43.
    B. Andersson, Z. Phys. C 43, 625 (1989)Google Scholar
  44. 44.
    L. Lönnblad, Comp. Phys. Comm. 71, 15 (1992)CrossRefGoogle Scholar
  45. 45.
    L. Lönnblad, Z. Phys. C 65, 285 (1995)Google Scholar
  46. 46.
    ZEUS Collaboration, J. Breitweg, Eur. Phys. J. C 11, 251 (1999)CrossRefGoogle Scholar
  47. 47.
    B. Andersson, Phys. Rep. 97, 31 (1983)CrossRefGoogle Scholar
  48. 48.
    T. Sjöstrand, Comp. Phys. Comm. 39, 347 (1986)Google Scholar
  49. 49.
    T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm. 43, 367 (1987)CrossRefGoogle Scholar
  50. 50.
    R. Brun, geant3, Technical Report CERN-DD/ EE/84-1, CERN, 1987Google Scholar
  51. 51.
    M. Vázquez. Ph.D. Thesis, Universidad Autónoma de Madrid, Report DESY-THESIS-2003-006, 2003 (unpublished)Google Scholar
  52. 52.
    E. Mirkes and D. Zeppenfeld, Phys. Lett. B 380, 205 (1996)CrossRefGoogle Scholar
  53. 53.
    W.T. Giele and E.W. Glover, Phys. Rev. D 46, 1980 (1992)CrossRefGoogle Scholar
  54. 54.
    H.L. Lai, Eur. Phys. J. C 12, 375 (2000)CrossRefGoogle Scholar
  55. 55.
    A.D. Martin, Eur. Phys. J. C 4, 463 (1998)CrossRefGoogle Scholar
  56. 56.
    A.D. Martin, Eur. Phys. J. C 14, 133 (2000)CrossRefGoogle Scholar
  57. 57.
    ZEUS Collaboration, S. Chekanov, Phys. Lett. B 531, 9 (2002)CrossRefGoogle Scholar
  58. 58.
    ZEUS Collaboration, S. Chekanov, Eur. Phys. J. C 23, 615 (2002)CrossRefGoogle Scholar
  59. 59.
    M. Wing (on behalf of the ZEUS Collaboration), in Proc. for “10th International Conference on Calorimetry in High Energy Physics”, 2002, R. Zhu (ed.), p. 767, Pasadena, USA, 2002Google Scholar
  60. 60.
    Particle Data Group, D.E. Groom, Eur. Phys. J. C 15, 1 (2000)Google Scholar
  61. 61.
    ZEUS Collaboration, S. Chekanov, Phys. Lett. B 547, 164 (2002)CrossRefGoogle Scholar
  62. 62.
    H1 Collaboration, C. Adloff, Eur. Phys. J. C 19, 289 (2001)Google Scholar
  63. 63.
    ZEUS Collaboration, J. Breitweg, Phys. Lett. B 507, 70 (2001)CrossRefGoogle Scholar
  64. 64.
    Particle Data Group, K. Hagiwara, Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • The ZEUS Collaboration

There are no affiliations available

Personalised recommendations