Advertisement

Motion of colored particle in a chromomagnetic field

  • Sh. Mamedov
theoretical physics

Abstract.

The Dirac equation in a chromomagnetic field is solved for a colored particle moving in a limited space volume. Quantized energy levels and the corresponding wave functions are found for backgrounds both directed along the third axes and having spherical symmetry. It was shown that there exists an interrelation with the case of motion in an infinite space volume.

Keywords

Wave Function Energy Level Dirac Equation Limited Space Spherical Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. van Baal, QCD in a Finite Volume, hep-ph/0008206Google Scholar
  2. 2.
    O. Nachtmann, High Energy Collisions and Nonperturbative QCD, in Lectures on QCD. Applications, edited by F.L.H. Griesshammer, D. Stoll (Springer 1997)Google Scholar
  3. 3.
    G.K. Savvidy, Phys. Lett. B 71, 133 (1979)CrossRefGoogle Scholar
  4. 4.
    L.S. Brown, W.I. Weisberger, Nucl. Phys. B 157, 285 (1979)CrossRefGoogle Scholar
  5. 5.
    R. Parthasarathy, M. Singer, C. Viswanatham, Canad. J. Phys. 61, 1442 (1983)Google Scholar
  6. 6.
    D. Ebert, K.G. Klimenko, H. Toki, V.Ch. Zhukovsky, Prog. Theor. Phys. 106, 835 (2001)zbMATHGoogle Scholar
  7. 7.
    Sh. Mamedov, Eur. Phys. J. C 18, 523 (2001)Google Scholar
  8. 8.
    A. Cabo, A. Shabad, Gauge Fields in the Medium and Vacuum in Presence of External Potential, Proceedings Lebedev Phys. Inst. 192, 153 (1988)Google Scholar
  9. 9.
    K.G. Klimenko, A.S. Vshivtsev, B.V. Magnitsky, V.Ch. Zhukovsky, Fiz. Elem. Chast. Atom. Yadra 29, 1259 (1998)Google Scholar
  10. 10.
    V.Ch. Zhukovskii, K.G. Levtchenko, T.L. Shoniya, P.A. Eminov, Moscow University Physics Bulletin, 51, No. 1, 1 (1996), hep-ph/9810244zbMATHGoogle Scholar
  11. 11.
    Sh.S. Agaev, A.S. Vshivtsev, V.Ch. Zhukovsky, P.G. Midodashvili, Vestn. Mosk. Univ. Fiz. 26, 12 (1985)Google Scholar
  12. 12.
    A.S. Vshivtsev, V. Ch. Zhukovskii, P.G. Midodashvili, A.V. Tatarintsev, Izv. Vissh. Ucheb. Zav., Fizika 5 (Sov. Phys. J. N5, 47 (1986))Google Scholar
  13. 13.
    F. Schwabl, Quantum mechanics (Springer-Verlag 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.High Energy Physics Lab.Institute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations