Deformed field theory on \(\kappa\)-spacetime

  • M. Dimitrijević
  • L. Jonke
  • L. Möller
  • E. Tsouchnika
  • J. Wess
  • M. Wohlgenannt
theoretical physics

Abstract.

A general formalism is developed that allows the construction of a field theory on quantum spaces which are deformations of ordinary spacetime. The symmetry group of spacetime (the Poincaré group) is replaced by a quantum group. This formalism is demonstrated for the \(\kappa\)-deformed Poincaré algebra and its quantum space. The algebraic setting is mapped to the algebra of functions of commuting variables with a suitable *-product. Fields are elements of this function algebra. The Dirac and Klein-Gordon equation are defined and an action is found from which they can be derived.

Keywords

Field Theory Symmetry Group Quantum Group Algebraic Setting Function Algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Letter of Heisenberg to Peierls (1930), in Wolfgang Pauli, Scientific Correspondence, Vol. II, 15, edited by Karl von Meyenn (Springer-Verlag 1985)Google Scholar
  2. 2.
    H.S. Snyder, Phys. Rev. 71, 38 (1947)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Letter of Pauli to Bohr (1947), in Wolfgang Pauli, Scientific Correspondence, Vol. II, 414, edited by Karl von Meyenn (Springer-Verlag 1985)Google Scholar
  4. 4.
    M. Jimbo, Lett. Math. Phys. 10, 63 (1985)MathSciNetMATHGoogle Scholar
  5. 5.
    V.G. Drinfel’d, Sov. Math. Dokl. 32, 254 (1985)Google Scholar
  6. 6.
    S.L. Woronowicz, Commun. Math. Phys. 111, 613 (1987)MATHGoogle Scholar
  7. 7.
    L.D. Faddeev, N.Y. Reshetikhin, L.A. Takhtadzhyan, Leningrad Math. J. 1, 193 (1990)MathSciNetMATHGoogle Scholar
  8. 8.
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys. 111, 61 (1978)MATHGoogle Scholar
  9. 9.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000) [hep-th/0001203]MathSciNetGoogle Scholar
  10. 10.
    R.J. Szabo, Phys. Rept. 378, 207 (2003) [hep-th/0109162]CrossRefMATHGoogle Scholar
  11. 11.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) [hep-th/0106048]CrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994) [hep-th/9405107]CrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Kosiński, J. Lukierski, P. Maślanka, J. Sobczyk, Mod. Phys. Lett. A 10, 2599 (1995) [hep-th/9412114]Google Scholar
  16. 16.
    Y.I. Manin, Commun. Math. Phys. 123, 163 (1989)MathSciNetMATHGoogle Scholar
  17. 17.
    P. Kosiński, J. Lukierski, P. Maślanka, Phys. Rev. D 62, 025004 (2000) [hep-th/9902037]CrossRefGoogle Scholar
  18. 18.
    P. Kosiński, J. Lukierski, P. Maślanka, Nucl. Phys. Proc. Suppl. 102, 161 (2001) [hep-th/0103127]CrossRefGoogle Scholar
  19. 19.
    P. Kosiński, P. Maślanka, J. Lukierski, A. Sitarz, Generalized \(\kappa\)-deformations and deformed relativistic scalar fields on noncommutative Minkowski space [hep-th/0307038]Google Scholar
  20. 20.
    G. Amelino-Camelia, M. Arzano, Phys. Rev. D 65, 084044 (2002) [hep-th/0105120]CrossRefGoogle Scholar
  21. 21.
    J. Wess, B. Zumino, Nucl. Phys. Proc. Suppl. B 18, 302 (1991)CrossRefGoogle Scholar
  22. 22.
    S.L. Woronowicz, Commun. Math. Phys. 122, 125 (1989)MathSciNetMATHGoogle Scholar
  23. 23.
    J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994) [hep-th/9310117]CrossRefMathSciNetGoogle Scholar
  24. 24.
    A. Ballesteros, F.J. Herranz, M.A. del Olmo, M. Santander, Phys. Lett. B 351, 137 (1995)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    A. Sitarz, Phys. Lett. B 349, 42 (1995) [hep-th/9409014]CrossRefMathSciNetGoogle Scholar
  26. 26.
    J. Lukierski, H. Ruegg, W.J. Zakrzewski, Annals Phys. 243, 90 (1995) [hep-th/9312153]CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    P. Kosi\’ nski, P. Ma\’ slanka, The duality between \(\kappa\)-Poincaré algebra and \(\kappa\)-Poincaré group [hep-th/9411033]Google Scholar
  28. 28.
    G. Amelino-Camelia, F. D’Andrea, G. Mandanici, Group velocity in noncommutative spacetime [hep-th/0211022]Google Scholar
  29. 29.
    A. Nowicki, E. Sorace, M. Tarlini, Phys. Lett. B 302, 419 (1993) [hep-th/9212065]CrossRefMathSciNetGoogle Scholar
  30. 30.
    J. Lukierski, H. Ruegg, W. Rühl, Phys. Lett. B 313, 357 (1993)CrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Podle\’ s, Commun. Math. Phys. 181, 569 (1996) [q-alg/9510019]MathSciNetGoogle Scholar
  32. 32.
    J. Kowalski-Glikman, S. Nowak, Phys. Lett. B 539, 126 (2002) [hep-th/0203040]CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    M.A. Dietz, Symmetrische Formen auf Quantenalgebren, Diploma thesis at the University of Hamburg (2001)Google Scholar
  34. 34.
    V. Kathotia, Kontsevich’s universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula, I, UC Davis Math 1998-16 [math.qa/9811174]Google Scholar
  35. 35.
    M. Dimitrijević, L. Möller, E. Tsouchnika, J. Wess, M. Wohlgenannt, forthcomingGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Dimitrijević
    • 1
    • 3
  • L. Jonke
    • 1
    • 4
  • L. Möller
    • 1
    • 2
  • E. Tsouchnika
    • 1
  • J. Wess
    • 1
    • 2
  • M. Wohlgenannt
    • 1
  1. 1.Fakultät für PhysikUniversität MünchenMünchenGermany
  2. 2.Max-Planck-Institut für PhysikMünchenGermany
  3. 3.Faculty of PhysicsUniversity of BelgradeBeogradSerbia
  4. 4.Theoretical Physics DivisionRudjer Boskovic InstituteZagrebCroatia

Personalised recommendations