Table 2 The strong coupling constants

From: Branching fractions of \(B^-\rightarrow D^-X_{0,1}(2900)\) and their implications

Vertex g Vertex g Vertex g
\(\Lambda _c^+\rightarrow \Lambda ^0D_s^+\) 5.83 \(\Lambda _c^+\rightarrow \Sigma ^0D_s^+\) 9.31 \(\Xi _c^{\prime 0}\rightarrow \Lambda ^0D^0\) 6.43
\(\Xi _c^{\prime 0}\rightarrow \Sigma ^0D^0\) 3.71 \(X_0(2900)\rightarrow \overline{K}^0D^0\) 1.0 \(X_1(2900)\rightarrow \overline{K}D^0\) 9.3
\(D_s^{*-}\rightarrow \overline{K}^0D^-\) 18.4 \(P_c^+(4312)\rightarrow \Lambda _c^+D^0\) 0.088 \(P_c^+(4312)\rightarrow \Lambda _c^+D^{*0}\) 0.58
\(P_c^+(4440)\rightarrow \Lambda _c^+D^0\) 0.80 \(P_c^+(4440)\rightarrow \Lambda _c^+D^{*0}\) 0.68 \(\Xi _c^0\rightarrow \Lambda ^0 D^0\) 1.59
\(\Xi _c^0\rightarrow \Sigma ^0 D^0\) 2.75 \(K^{*-}\rightarrow \overline{K}^0\pi ^-\) 4.60 \(D^{*0}\rightarrow D^+\pi ^-\) 17.9
Vertex \(f_1\) \(f_2\) Vertex \(f_1\) \(f_2\)
\(\Lambda _c^+\rightarrow \Lambda ^0 D_s^{*-}\) 2.05 7.78 \(\Xi _c^{\prime 0}\rightarrow \Lambda ^0D^{*0}\) − 5.63 − 10.0
\(\Lambda _c^+\rightarrow \Sigma ^0 D_s^{*-}\) 3.55 13.5 \(\Xi _c^{\prime 0}\rightarrow \Sigma ^0D^{*0}\) − 3.2 − 6.0
\(\Xi _c^{0}\rightarrow \Lambda ^0D^{*0}\) 3.55 13.5 \(\Xi _c^{0}\rightarrow \Sigma ^0D^{*0}\) 2.05 7.78