# Localization of gauge fields in a tachyonic de Sitter thick braneworld

- 396 Downloads
- 12 Citations

## Abstract

In this work we show that universal gauge vector fields can be localized on the recently proposed 5D thick tachyonic braneworld which involves a de Sitter cosmological background induced on the 3-brane. Namely, by performing a suitable decomposition of the vector field, the resulting 4D effective action corresponds to a massive gauge field, while the profile along the extra dimension obeys a Schrödinger-like equation with a Pöschl–Teller potential. It turns out that the massless zero mode of the gauge field is bound to the expanding 3-brane and allows us to recover the standard 4D electromagnetic phenomena of our world. Moreover, this zero mode is separated from the continuum of Kaluza–Klein (KK) modes by a mass gap determined by the scale of the expansion parameter. We also were able to analytically solve the corresponding Schrödinger-like equation for arbitrary mass, showing that KK massive modes asymptotically behave like plane waves, as expected.

### Keywords

Gauge Field Warp Factor Tachyon Field Cosmological Background Teller Potential## 1 Introduction and review of the thick tachyonic braneworld

The original proposal that extra dimensions can be non-compact [1, 2, 3, 4, 5] or even large [6, 7, 8] supplied new insights when attempting to solve the long standing cosmological constant problem [1, 2, 3, 5, 9, 10] and the intriguing gauge hierarchy problem [7, 8, 11, 12]. Subsequently, after the surprising success of the Randall–Sundrum models in addressing the mass hierarchy and 4D gravity localization problems [13, 14], during the last years, several braneworld configurations have been proposed in order to address different open problems in modern physics. Most of the braneworlds that generalize the original Randall–Sundrum setup make use of bulk scalar fields. In this framework, different kinds of scalar fields give rise to a wide range of scenarios [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. In particular, some authors have choosen a bulk tachyonic scalar field in order to address problems like the gauge hierarchy, the stabilization of the corresponding brane separation, and the localization of gravity and other matter fields [35, 36, 37, 38, 39, 40]. However, many attempts to solve the highly non-linear field equations that arise in these scalar–tensor systems lead to imaginary tachyon field configurations [41, 42] or to delocalization of gravity and other kinds of matter, like scalar and gauge vector fields (see, for instance, the tachyonic braneworlds constructed in [36, 37, 41] and references therein).

An interesting issue within the braneworld paradigm is related to the question of whether bulk matter fields can be confined to the brane by a natural mechanism. Usually, scalar fields and gravitons, as well as fermions, can be localized on branes of different types. However, within most of the so far proposed thin braneworlds, gauge vector fields cannot be localized on the 3-brane that represents our Universe by a gravitational trapping mechanism [43, 44, 45, 46]. Quite recently some new braneworlds endowed with different mechanisms for localizing gauge vector fields, either on Weyl thick branes [47, 48], on purely geometrical expanding (de Sitter) branes [49] or in anisotropically curved branes supported by phantom [50] and real scalar fields [51], were constructed. In particular, vector fields can be localized on the RS model in some higher-dimensional cases [52].

In this paper we use a recently proposed thick tachyonic braneworld configuration with a de Sitter metric induced on the brane and a decaying warp factor that enables the localization of 4D gravity [40], and show that universal gauge vector fields can also be localized in it. Moreover, when analyzing the dynamics of the vector field fluctuations, we see that their spectrum contains a *single* bound state corresponding to the 4D massless photon of the model, separated from a continuum of massive KK excitations by a mass gap.

On the other hand, this kind of de Sitter 3-branes embedded in a higher dimensional manifold are also interesting from the point of view of cosmology. Since the aforementioned field configuration describes a 3-brane with 4D de Sitter symmetry (i.e. an expanding \(dS_4\) brane) embedded in a positive definite and asymptotically Minkowski spacetime \(M_5\), it qualitatively describes some aspects of the inflationary period of our own universe [53, 54]. Moreover, since the second derivative of the scale factor with respect to time is positive, it can describe some aspects of the accelerated expansion of the universe, related to its present epoch. It is known that the cosmic inflation theory is in accordance with the temperature fluctuation properties observed in the cosmic microwave background radiation. This agreement and other observational successes, together with the fact that inflation likely occurs at very high temperatures and its study involves relevant assumptions regarding the physical phenomena that take place at such high energies, lead to several serious attempts to find inflationary configurations within the framework of string theory and supergravity [55, 56, 57].

The second therm in (1) was originally proposed in [58, 59] when studying a tachyon field living on the world volume of a non-BPS brane and has found interesting applications in braneworld cosmology [64] and in string cosmology [65, 66, 67]. In [68] it was realized that this action can, in fact, be used for any relativistic scalar field. Moreover, solar system constraints were analyzed in [69] by using this tachyonic action as a scalar tensor theory.

Thus, the full solution corresponds to a non-trivial 5D configuration that describes a thick braneworld supported by a real tachyonic scalar field in which the induced metric on the 3-brane is described by a de Sitter 4D cosmological background.

It is evident that the warp factor decays and asymptotically vanishes along the extra dimension, whereas the tachyon scalar possesses a kink or antikink-like profile. In contrast with previously found solutions for this system, see for instance [41], the self-interaction tachyon potential \(V(T)\) can be explicitly expressed in terms of the tachyonic scalar field \(T\) and has a maximum/minimum at the position of the brane, but it is positive/negative definite as can be seen from (5). Moreover, since the tachyon field is bounded, the self-interaction potential \(V(T)\) is bounded as well and remains always real.

## 2 Localization of gauge vector fields

## 3 Conclusions and discussion

We have shown that gauge field localization in the de Sitter thick braneworld generated by gravity coupled to a tachyonic scalar field is feasible since the normalizable vector zero mode can be localized on the brane. The spectrum consists of a massless zero mode (the ground state) and a series of continuous massive KK gauge modes separated by a mass gap from the massless one, as also happens in the KK spectrum of the metric fluctuations [40]. The mass gap is proportional to \(H\), and hence, proportional to the square root of the 4D cosmological constant. Thus, the height of the mass gap, which determines the energy scale at which the KK fluctuations can be excited, somehow is defined by the 4D cosmological constant and is big/small if the Hubble parameter is big/small.

It would be interesting to consider the localization of fermion fields in the tachyonic braneworld model under consideration. This study could lead to the possibility of computing the corrections to Coulomb’s law due to the KK massive modes of the gauge vector field within the model. It is also interesting to perform the analysis of one-loop corrections to brane-to-brane propagators as in [71] in order to study possible divergent pathologies related to the existence of the mass gap of the model under consideration. These two issues are currently under consideration, and we do hope to overcome the difficulties we found and report on them in the near future.

## Notes

### Acknowledgments

The authors acknowledge useful and illuminating discussions with Raúl Henríquez. AHA is grateful to A.S. Adamidou for her valuable support. AHA and ADR are grateful to MCTP, UNACH for hospitality, and thank SNI for support. ADR acknowledges a postdoctoral grant from CONACYT while the research of AHA was supported from grant “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica” (PAPIIT) UNAM, IN103413-3, *Teorías de Kaluza–Klein, inflación y perturbaciones gravitacionales.*

### References

- 1.V.A. Rubakov, M.E. Shaposhnikov, Do we live inside a domain wall? Phys. Lett. B
**125**, 136 (1983)ADSCrossRefGoogle Scholar - 2.V.A. Rubakov, M.E. Shaposhnikov, Extra space-time dimensions: towards a solution to the cosmological constant problem. Phys. Lett. B
**125**, 139 (1983)ADSCrossRefGoogle Scholar - 3.E.J. Squires, Dimensional reduction caused by a cosmological constant. Phys. Lett. B
**167**, 286 (1986)ADSCrossRefMathSciNetGoogle Scholar - 4.M. Visser, An exotic class of Kaluza-Klein models. Phys. Lett. B
**159**, 22 (1985). arXiv:hep-th/9910093 - 5.S. Randjbar-Daemi, C. Wetterich, Kaluza-Klein solutions with noncompact internal spaces. Phys. Lett. B
**166**, 65 (1986)ADSCrossRefMathSciNetGoogle Scholar - 6.I. Antoniadis, A possible new dimension at a few Tev. Phys. Lett. B
**246**, 377 (1990)ADSCrossRefMathSciNetGoogle Scholar - 7.N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B
**429**, 263 (1998). arXiv:hep-ph/9803315 - 8.I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B
**436**, 257 (1998). arXiv:hep-ph/9804398 - 9.N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, R. Sundrum, A small cosmological constant from a large extra dimension. Phys. Lett. B
**480**, 193 (2000). arXiv:hep-th/0001197 - 10.S. Kachru, M. Schulz, E. Silverstein, Self-tuning flat domain walls in 5D gravity and string theory. Phys. Rev. D
**62**, 045021 (2000). arXiv:hep-th/0001206 - 11.M. Gogberashvili, Hierarchy problem in the shell universe model. Int. J. Mod. Phys. D
**11**, 1635 (2002). arXiv:hep-ph/9812296 - 12.M. Gogberashvili, Four dimensionality in noncompact Kaluza-Klein model. Mod. Phys. Lett. A
**14**, 2025 (1999). arXiv:hep-ph/9904383 - 13.L. Randall, R. Sundrum, A Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett.
**83**, 3370 (1999). arxiv:hep-ph/9905221 - 14.L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett.
**83**, 4690 (1999). arXiv:hep-th/9906064 Google Scholar - 15.O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, Modeling the fifth dimension with scalars and gravity. Phys. Rev. D
**62**, 046008 (2000). arXiv:hep-th/9909134 - 16.A. Kehagias and K. Tamvakis, Localized Gravitons, Gauge Bosons and Chiral Fermions in Smooth Spaces Generated by a Bounce, Phys. Lett. B 504(2001) 38, arXiv:hep-th/0010112
- 17.C. Csaki, J. Erlich, T. Hollowood, Y. Shirman, Universal Aspects of gravity localized on thick branes. Nucl. Phys. B
**581**, 309 (2000). arXiv:hep-th/0001033 - 18.M.K. Parikh, S.N. Solodukhin, De Sitter brane gravity: From close-up to panorama. Phys. Lett. B
**503**, 384 (2001). arXiv:hep-th/0012231 - 19.A. Wang, Thick de Sitter 3-Branes, Dynamic Black Holes and Localization of Gravity. Phys. Rev. D
**66**, 024024 (2002). arXiv:hep-th/0201051 - 20.I.H. Brevik, K. Ghoroku, S.D. Odintsov, M. Yahiro, Localization of gravity on brane embedded in AdS(5) and dS(5). Phys. Rev. D
**66**, 064016 (2002). arXiv:hep-th/0204066 - 21.D. Bazeia, A.R. Gomes, Bloch Brane. JHEP
**0405**, 012 (2004). arXiv:hep-th/0403141 - 22.V.I. Afonso, D. Bazeia, R. Menezes, AYu. Petrov, f(R)-Brane. Phys. Lett. B
**658**, 71 (2007). arXiv:0710.3790 [hep-th] - 23.A. Balcerzak and M.P. Da̧browski, Brane f(R) gravity cosmologies, Phys. Rev. D 81 (2010) 123527, arXiv:1004.0150 [hep-th]
- 24.A. Herrera-Aguilar, D. Malagón-Morejón, R.R. Mora-Luna, Localization of gravity on a thick braneworld without scalar fields. JHEP
**1011**, 015 (2010). arXiv:1009.1684 [hep-th] - 25.Y. Zhong, Y.-X. Liu, K. Yang, Tensor perturbations of f(R)-branes. Phys. Lett. B
**699**, 398 (2011). arXiv:1010.3478 [hep-th] - 26.M. Gogberashvili, D. Singleton, Anti-de-Sitter Island-Universes from 5D Standing Waves. Mod. Phys. Lett. A
**25**, 2131 (2010). arXiv:0904.2828 [hep-th] - 27.M. Gogberashvili, A. Herrera-Aguilar, D. Malagón-Morejón, An Anisotropic Standing Wave Braneworld and Associated Sturm-Liouville Problem. Class. Quantum Grav.
**29**, 025007 (2012). arXiv:1012.4534 [hep-th] - 28.O. Arias, R. Cardenas, I. Quiros, Thick brane worlds arising from pure geometry. Nucl. Phys. B
**643**, 187 (2002). arXiv:hep-th/0202130 - 29.N. Barbosa-Cendejas, A. Herrera-Aguilar, Localization of 4D gravity on pure geometrical thick branes. Phys. Rev. D
**73**, 084022 (2006)Google Scholar - 30.N. Barbosa-Cendejas, A. Herrera-Aguilar, Erratum-ibid. D
**77**, 049901 (2008). arXiv:hep-th/0603184 - 31.J.M. Hoff da Silva, R. da Rocha, Braneworld remarks in Riemann-Cartan manifolds. Class. Quantum Grav.
**26**, 055007 (2009)ADSCrossRefGoogle Scholar - 32.J.M. Hoff da Silva and R. da Rocha, Corrigendum-ibid. 26 (2009) 179801, arXiv:0804.4261 [gr-qc]
- 33.J.M. Hoff da Silva, R. da Rocha, Effective Monopoles within Thick Branes. Europhys. Lett.
**100**, 11001 (2012). arXiv:1209.0989 [hep-th] - 34.J.M. Hoff da Silva, R. da Rocha, Black string corrections in variable tension braneworld scenarios. Phys. Rev. D
**85**, 046009 (2012). arXiv:1202.1256 [gr-qc] - 35.D. Bazeia, F.A. Brito, J.R. Nascimento, Supergravity brane worlds and tachyon potentials. Phys. Rev. D
**68**, 085007 (2003). arXiv:hep-th/0306284 - 36.R. Koley, S. Kar, A Novel braneworld model with a bulk scalar field. Phys. Lett. B
**623**, 244 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar - 37.R. Koley, S. Kar, Erratum-ibid. B
**631**, 199 (2005). arXiv:hep-th/0507277 - 38.D. Maity, S. SenGupta, S. Sur, Stability analysis of the Randall-Sundrum braneworld in presence of bulk scalar. Phys. Lett. B
**643**, 348 (2006). arXiv:hep-th/0604195 - 39.A. Das, S. Kar, S. SenGupta, Stable two-brane models with bulk tachyon matter. Int. J. Mod. Phys. A
**24**, 4457 (2009). arXiv:0804.1757 [hep-th] - 40.G. Germán, A. Herrera-Aguilar, D. Malagón-Morejón, R.R. Mora-Luna, R. da Rocha, A de Sitter tachyon thick braneworld. JCAP
**1302**, 035 (2013). arXiv:1210.0721 [hep-th] - 41.S. Pal, S. Kar, de Sitter branes with a bulk scalar. Gen. Rel. Grav.
**41**, 1165 (2009). arXiv:hep-th/0701266 - 42.M. Carrillo-González, G. Germán, A. Herrera-Aguilar, D. Malagón-Morejón, On gravity localization in scalar braneworlds with a super-exponential warp factor. Gen. Rel. Grav.
**46**, 1657 (2014). arXiv:1210.0597 [hep-th]Google Scholar - 43.G.R. Dvali, M.A. Shifman, Domain walls in strongly coupled theories. Phys. Lett. B
**396**, 64 (1997). arXiv:hep-th/9612128 - 44.B. Bajc, G. Gabadadze, Localization of matter and cosmological constant on a brane in anti de Sitter space. Phys. Lett. B
**474**, 282 (2000). arXiv:hep-th/9912232 - 45.A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity. Phys. Lett. B
**486**, 153 (2000). arXiv: hep-ph/9911294 - 46.I. Oda, Bosonic fields in the string-like defect model. Phys. Rev. D
**62**, 126009 (2000). arXiv:hep-th/0008012 - 47.Y.-X. Liu, X.-H. Zhang, L.-D. Zhang, Y.-S. Duan, Localization of Matters on Pure Geometrical Thick Branes. JHEP
**0802**, 067 (2008). arXiv:0708.0065 [hep-th] - 48.Y.-X. Liu, L.-D. Zhang, S.-W. Wei, Y.-S. Duan, Localization and Mass Spectrum of Matters on Weyl Thick Branes. JHEP
**0808**, 041 (2008). arXiv:0803.0098 [hep-th] - 49.H. Guo, A. Herrera-Aguilar, Y.-X. Liu, D. Malagón-Morejón, R.R. Mora-Luna, Localization of bulk matter fields on a pure de Sitter thick braneworld. Phys. Rev. D
**87**, 095011 (2013). arXiv:1103.2430 [hep-th] - 50.M. Gogberashvili, P. Midodashvili, Localization of gauge bosons in the 5D standing wave braneworld. Phys. Lett. B
**707**, 169 (2012). arXiv:1105.1866 [hep-th] - 51.M. Gogberashvili, P. Midodashvili, Gauge Fields in the 5D Gravity-Scalar Standing Wave Braneworld. Europhys. Lett.
**104**, 50002 (2013). arXiv:1312.6241 [hep-th] - 52.I. Oda, Localization of matters on a string-like defect. Phys. Lett. B
**496**, 113 (2000). arXiv:hep-th/0006203 - 53.A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D
**23**, 347 (1981)ADSCrossRefGoogle Scholar - 54.A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B
**108**, 389 (1982)ADSCrossRefMathSciNetGoogle Scholar - 55.I.Y. Park, C.N. Pope, A. Sadrzadeh, AdS brane world Kaluza-Klein reduction. Class. Quant. Grav.
**19**, 6237 (2002). arXiv:hep-th/0110238 - 56.C.P. Burgess, Lectures on Cosmic Inflation and its Potential Stringy Realizations. Class. Quant. Grav.
**24**, S795 (2007). arXiv:0708.2865 [hep-th] - 57.L. McAllister, E. Silverstein, String Cosmology: A Review. Gen. Rel. Grav.
**40**, 565 (2008). arXiv:0710.2951 [hep-th] - 58.A. Sen, Supersymmetric world volume action for nonBPS D-branes. JHEP
**9910**, 008 (1999). arXiv:hep-th/9909062 - 59.E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras, S. Panda, T duality and actions for non-BPS D-branes. JHEP
**0005**, 009 (2000). arXiv:hep-th/0003221 - 60.A. Sen, Rolling tachyon. JHEP
**0204**, 048 (2002). arXiv:hep-th/0203211 - 61.A. Sen, Tachyon matter. JHEP
**0207**, 065 (2002). arXiv:hep-th/0203265 - 62.A. Sen, Field theory of tachyon matter. Mod. Phys. Letts. A
**17**, 1797 (2002). arXiv:hep-th/0204143 - 63.A. Sen, Time and tachyon. Int. J. Mod. Phys. A
**18**, 4869 (2003). arXiv:hep-th/0209122 - 64.A. Mazumdar, S. Panda, A. Perez-Lorenzana, Assisted inflation via tachyon condensation. Nucl. Phys. B
**614**, 101 (2001). arXiv:hep-ph/0107058 - 65.G.W. Gibbons, Cosmological evolution of the rolling tachyon. Phys. Lett. B
**537**, 1 (2002). arXiv:hep-th/0204008 - 66.D. Choudhury, D. Ghoshal, D.P. Jatkar, S. Panda, On the cosmological relevance of the tachyon. Phys. Lett. B
**544**, 231 (2002). arXiv:hep-th/0204204 - 67.D. Choudhury, D. Ghoshal, D.P. Jatkar, S. Panda, Hybrid inflation and brane - anti-brane system. JCAP
**0307**, 009 (2003). arXiv:hep-th/0305104 - 68.T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D
**66**, 021301 (2002). arXiv:hep-th/0204150 - 69.N. Chandrachani Devi, S. Panda, A. A. Sen, Solar System Constraints on Scalar Tensor Theories with Non-Standard Action, Phys. Rev. D 84 (2011) 063521, arXiv:1104.0152
- 70.N. Barbosa-Cendejas, A. Herrera-Aguilar, M.A. Reyes Santos and C. Schubert, Mass gap for gravity localized on Weyl thick branes. Phys. Rev. D
**77**, 126013 (2008). arXiv:0709.3552 [hep-th] - 71.D.V. Kirpichnikov, Infrared properties of one-loop corrections to brane-to-brane propagators in models with localized vector bosons. Phys. Rev. D
**88**, 125018 (2013). arXiv:1310.2866

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP^{3} / License Version CC BY 4.0.