ΛCDM model with a scalar perturbation vs. preferred direction of the universe

Regular Article - Theoretical Physics

Abstract

We present a scalar perturbation for the ΛCDM model, which breaks the isotropic symmetry of the universe. Based on the Union2 data, the least-χ 2 fit of the scalar perturbed ΛCDM model shows that the universe has a preferred direction (l,b)=(287±25,11±22). The magnitude of scalar perturbation is about −2.3×10−5. The scalar perturbation for the ΛCDM model implies a peculiar velocity, which is perpendicular to the radial direction. We show that the maximum peculiar velocities at redshift z=0.15 and z=0.015 equal to 73±28 km s−1 and 1099±427 km s−1, respectively. They are compatible with the constraints on the peculiar velocity given by the Planck Collaboration.

Keywords

Dark Energy Prefer Direction Wilkinson Microwave Anisotropy Probe Scalar Perturbation Peculiar Velocity 

Notes

Acknowledgements

We would like to thank Y.G. Jiang for useful discussions. Project 11375203 and 11305181 supported by NSFC.

References

  1. 1.
    V. Sahni, Class. Quantum Gravity 19, 3435 (2002) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    Planck Collaboration, arXiv:1303.5062
  5. 5.
    N. Suzuki et al., Astrophys. J. 746, 85 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    L. Perivolaropoulos, arXiv:1104.0539
  7. 7.
    I. Antoniou, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 1012, 012 (2012) ADSGoogle Scholar
  8. 8.
    R. Watkins, H.A. Feldman, M.J. Hu dson, Mon. Not. R. Astron. Soc. 392, 743 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    G. Hinshaw et al., Astrophys. J. Suppl. 180, 225 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Planck Collaboration, arXiv:1303.5083
  11. 11.
    T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Alexander, T. Biswas, A. Notari, D. Vaid, J. Cosmol. Astropart. Phys. 0909, 025 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    J. Garcia-Bellido, T. Haugboelle, J. Cosmol. Astropart. Phys. 0804, 003 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    E. Akofor et al., J. High Energy Phys. 0805, 092 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    T.S. Koivisto, D.F. Mota, M. Quartin, T.G. Zlosnik, Phys. Rev. D 83, 023509 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    Z. Chang, M.-H. Li, X. Li, S. Wang, Eur. Phys. J. C 73, 2459 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972) Google Scholar
  18. 18.
    Planck Collaboration, arXiv:1303.5090
  19. 19.
    R. Amanullah et al., Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    A. Kogut et al., Astrophys. J. 419, 1 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    R.-G. Cai, Z.-L. Tuo, J. Cosmol. Astropart. Phys. 1202, 004 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    B. Kalus et al., Astron. Astrophys. 553, A56 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    R.G. Cai, Y.Z. Ma, B. Tang, Z.L. Tuo, Phys. Rev. D 87, 123522 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    K. Rosquist, R.T. Jantzen, Phys. Rep. 166, 89 (1988) ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Institute of High Energy Physics, Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina

Personalised recommendations