Advertisement

Generalized states in SFT

  • L. Bonora
  • S. Giaccari
Regular Article - Theoretical Physics

Abstract

The search for analytic solutions in open string fields theory à la Witten often meets with singular expressions, which need an adequate mathematical formalism to be interpreted. In this paper we discuss this problem and propose a way to resolve the related ambiguities. Our claim is that a correct interpretation requires a formalism similar to distribution theory in functional analysis. To this end we concretely construct a locally convex space of test string states together with the dual space of functionals. We show that the above suspicious expressions can be identified with well defined elements of the dual.

Keywords

Dual Space Topological Vector Space Strong Topology Normed Vector Space Linear Continuous Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

L.B. would like to thank Gianni Dal Maso for sharing with him his expertise on functional analysis. We would like to thank D.D. Tolla for discussions and for our using material from previous joint papers. The work of L.B. and S.G. was supported in part by the MIUR-PRIN contract 2009-KHZKRX.

References

  1. 1.
    E. Witten, Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986) ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory. Adv. Theor. Math. Phys. 10, 433 (2006). arXiv:hep-th/0511286 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory. J. High Energy Phys. 0604, 055 (2006). arXiv:hep-th/0603159 ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    L. Rastelli, B. Zwiebach, Solving open string field theory with special projectors. J. High Energy Phys. 0801, 020 (2008). arXiv:hep-th/0606131 ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Y. Okawa, L. Rastelli, B. Zwiebach, Analytic solutions for tachyon condensation with general projectors. arXiv:hep-th/0611110
  6. 6.
    E. Fuchs, M. Kroyter, On the validity of the solution of string field theory. J. High Energy Phys. 0605, 006 (2006). arXiv:hep-th/0603195 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    T. Erler, M. Schnabl, A simple analytic solution for tachyon condensation. J. High Energy Phys. 0910, 066 (2009). arXiv:0906.0979 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Kiermaier, Y. Okawa, L. Rastelli, B. Zwiebach, Analytic solutions for marginal deformations in open string field theory. J. High Energy Phys. 0801, 028 (2008). arXiv:hep-th/0701249 ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Schnabl, Comments on marginal deformations in open string field theory. Phys. Lett. B 654, 194–199 (2007). arXiv:hep-th/0701248 ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    M. Kiermaier, Y. Okawa, Exact marginality in open string field theory: a general framework. J. High Energy Phys. 0911, 041 (2009). arXiv:0707.4472 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Fuchs, M. Kroyter, R. Potting, Marginal deformations in string field theory. J. High Energy Phys. 0709, 101 (2007). arXiv:0704.2222 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    B.H. Lee, C. Park, D.D. Tolla, Marginal deformations as lower dimensional D-brane solutions in open string field theory. arXiv:0710.1342 [hep-th]
  13. 13.
    O.K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory. Nucl. Phys. B 804, 1 (2008). arXiv:0801.0573 [hep-th] ADSCrossRefMATHGoogle Scholar
  14. 14.
    T. Erler, Tachyon vacuum in cubic superstring field theory. J. High Energy Phys. 0801, 013 (2008). arXiv:0707.4591 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory. J. High Energy Phys. 0709, 084 (2007). arXiv:0704.0936 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory. J. High Energy Phys. 0709, 082 (2007). arXiv:0704.3612 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Kiermaier, Y. Okawa, General marginal deformations in open superstring field theory. J. High Energy Phys. 0911, 042 (2009). arXiv:0708.3394 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Erler, Marginal solutions for the superstring. J. High Energy Phys. 0707, 050 (2007). arXiv:0704.0930 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    I.Y. Aref’eva, R.V. Gorbachev, D.A. Grigoryev, P.N. Khromov, M.V. Maltsev, P.B. Medvedev, Pure gauge configurations and tachyon solutions to string field theories equations of motion. J. High Energy Phys. 0905, 050 (2009). arXiv:0901.4533 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    I.Y. Arefeva, R.V. Gorbachev, On gauge equivalence of tachyon solutions in cubic Neveu–Schwarz string field theory. Theor. Math. Phys. 165, 1512 (2010). arXiv:1004.5064 [hep-th] CrossRefGoogle Scholar
  21. 21.
    E.A. Arroyo, Generating Erler–Schnabl-type solution for tachyon vacuum in cubic superstring field theory. J. Phys. A 43, 445403 (2010). arXiv:1004.3030 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    S. Zeze, Tachyon potential in KBc subalgebra. Prog. Theor. Phys. 124, 567 (2010). arXiv:1004.4351 [hep-th] ADSCrossRefMATHGoogle Scholar
  23. 23.
    S. Zeze, Regularization of identity based solution in string field theory. J. High Energy Phys. 1010, 070 (2010). arXiv:1008.1104 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    E.A. Arroyo, Comments on regularization of identity based solutions in string field theory. J. High Energy Phys. 1011, 135 (2010). arXiv:1009.0198 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    M. Murata, M. Schnabl, On multibrane solutions in open string field theory. Prog. Theor. Phys. Suppl. 188, 50 (2011). arXiv:1103.1382 [hep-th] ADSCrossRefMATHGoogle Scholar
  26. 26.
    M. Murata, M. Schnabl, Multibrane solutions in open string field theory. J. High Energy Phys. 1207, 063 (2012). arXiv:1112.0591 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    T. Baba, N. Ishibashi, Energy from the gauge invariant observables. J. High Energy Phys. 04, 050 (2013). arXiv:1208.6206 [hep-th] ADSCrossRefGoogle Scholar
  28. 28.
    H. Hata, T. Kojita, Singularities in K-space and multi-brane solutions in cubic string field theory. J. High Energy Phys. 1302, 065 (2013). arXiv:1209.4406 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    T. Masuda, Comments on new multiple-brane solutions based on Hata–Kojita duality in open string field theory. arXiv:1211.2649 [hep-th]
  30. 30.
    T. Masuda, On the classical solution for the double-brane background in open string field theory. arXiv:1211.2646 [hep-th]
  31. 31.
    E. Fuchs, M. Kroyter, Analytical solutions of open string field theory. Phys. Rep. 502, 89 (2011). arXiv:0807.4722 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Schnabl, Algebraic solutions in open string field theory—a lightning review. Acta Polytech. 50(3), 102 (2010). arXiv:1004.4858 [hep-th] Google Scholar
  33. 33.
    L. Bonora, C. Maccaferri, D.D. Tolla, Relevant deformations in open string field theory: a simple solution for lumps. J. High Energy Phys. 1111, 107 (2011). arXiv:1009.4158 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    L. Bonora, S. Giaccari, D.D. Tolla, The energy of the analytic lump solution in SFT. J. High Energy Phys. 08, 158 (2011). arXiv:1005.5926 [hep-th]. Erratum: J. High Energy Phys. 04, 001 (2012) ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    T. Erler, C. Maccaferri, Comments on lumps from RG flows. J. High Energy Phys. 1111, 092 (2011). arXiv:1105.6057 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    T. Erler, C. Maccaferri, The phantom term in open string field theory. J. High Energy Phys. 1206, 084 (2012). arXiv:1201.5122 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    T. Erler, C. Maccaferri, Connecting solutions in open string field theory with singular gauge transformations. J. High Energy Phys. 1204, 107 (2012). arXiv:1201.5119 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    L. Bonora, S. Giaccari, D.D. Tolla, Analytic solutions for Dp branes in SFT. J. High Energy Phys. 12, 033 (2011). arXiv:1106.3914 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    L. Bonora, S. Giaccari, D.D. Tolla, Lump solutions in SFT. Complements. arXiv:1109.4336 [hep-th]
  40. 40.
    E. Witten, Some computations in background independent off-shell string theory. Phys. Rev. D 47, 3405 (1993). arXiv:hep-th/9210065 ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    D. Kutasov, M. Marino, G.W. Moore, Some exact results on tachyon condensation in string field theory. J. High Energy Phys. 0010, 045 (2000). arXiv:hep-th/0009148 ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    I. Ellwood, Singular gauge transformations in string field theory. J. High Energy Phys. 0905, 037 (2009). arXiv:0903.0390 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    I.M. Guelfand, G.E. Chilov, Les Distributions, tome 1, 2 (Dunod, Paris, 1962) MATHGoogle Scholar
  44. 44.
    L. Schwartz, Théorie des distributions à valeurs vectorielles, I. Ann. Inst. Fourier 7, 1–141 (1957) CrossRefMATHGoogle Scholar
  45. 45.
    L. Schwartz, Théorie des distributions à valeurs vectorielles, II. Ann. Inst. Fourier 8, 1–209 (1958) CrossRefMATHGoogle Scholar
  46. 46.
    J. Bognar, Indefinite Inner Product Spaces (Springer, Berlin, 1974) CrossRefMATHGoogle Scholar
  47. 47.
    F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967) MATHGoogle Scholar
  48. 48.
    N. Bourbaki, Espaces Vectoriels Topologiques (Masson, Paris, 1981) MATHGoogle Scholar
  49. 49.
    G. Köthe, Topological Vector Spaces, vol. I (Springer, Berlin, 1983) Google Scholar
  50. 50.
    K. Yosida, Functional Analysis (Springer, Berlin, 1980) CrossRefMATHGoogle Scholar
  51. 51.
    L. Rastelli, A. Sen, B. Zwiebach, Star algebra spectroscopy. J. High Energy Phys. 0203, 029 (2002). arXiv:hep-th/0111281 ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    L. Bonora, C. Maccaferri, R.J. Scherer Santos, D.D. Tolla, Ghost story, I: wedge states in the oscillator formalism. J. High Energy Phys. 0709, 061 (2007). arXiv:0706.1025 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    L. Bonora, C. Maccaferri, R.J. Scherer Santos, D.D. Tolla, Ghost story, II: the midpoint ghost vertex. J. High Energy Phys. 0911, 075 (2009). arXiv:0908.0055 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    L. Bonora, C. Maccaferri, D.D. Tolla, Ghost story, III: back to ghost number zero. J. High Energy Phys. 0911, 086 (2009). arXiv:0908.0056 [hep-th] ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.International School for Advanced Studies (SISSA)INFN, Sezione di TriesteTriesteItaly

Personalised recommendations