Skip to main content
Log in

New charged shear-free relativistic models with heat flux

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein–Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie’s group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conformally flat metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  2. N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)

    ADS  Google Scholar 

  3. S.M. Wagh, M. Govender, K.S. Govinder, S.D. Maharaj, P.S. Muktibodh, M. Moodley, Class. Quantum Gravity 18, 2147 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S.D. Maharaj, M. Govender, Int. J. Mod. Phys. D 14, 667 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S.S. Misthry, S.D. Maharaj, P.G.L. Leach, Math. Methods Appl. Sci. 31, 363 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. Herrera, A. di Prisco, L. Ospino, Phys. Rev. D 74, 044001 (2006)

    Article  ADS  Google Scholar 

  7. S. Thirukkanesh, S.S. Rajah, S.D. Maharaj, J. Math. Phys. 53, 032506 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. O. Bergmann, Phys. Lett. A 82, 383 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  9. S.R. Maiti, Phys. Rev. D 25, 2518 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. B. Modak, J. Astrophys. Astron. 5, 317 (1984)

    Article  ADS  Google Scholar 

  11. A.K. Sanyal, D. Ray, J. Math. Phys. 25, 1975 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Deng, Gen. Relativ. Gravit. 21, 503 (1989)

    Article  ADS  Google Scholar 

  13. A.M. Msomi, K.S. Govinder, S.D. Maharaj, Gen. Relativ. Gravit. 43, 1685 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A.M. Msomi, K.S. Govinder, S.D. Maharaj, Int. J. Theor. Phys. 51, 1290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. B.V. Ivanov, Gen. Relativ. Gravit. 44, 1835 (2012)

    Article  ADS  MATH  Google Scholar 

  16. K. Komathiraj, S.D. Maharaj, J. Math. Phys. 48, 042501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. M.K. Mak, T. Harko, Int. J. Mod. Phys. D 13, 149 (2004)

    Article  ADS  MATH  Google Scholar 

  18. K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. F.S.N. Lobo, Class. Quantum Gravity 23, 1525 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S.D. Maharaj, S. Thirukkanesh, Pramana J. Phys. 72, 481 (2009)

    Article  ADS  Google Scholar 

  21. R. Sharma, S.D. Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    Article  ADS  Google Scholar 

  22. S. Thirukkanesh, S.D. Maharaj, Math. Methods Appl. Sci. 32, 684 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. R. Chan, Int. J. Mod. Phys. D 12, 1131 (2003)

    Article  ADS  MATH  Google Scholar 

  24. R. Chan, Astron. Astrophys. 368, 325 (2001)

    Article  ADS  Google Scholar 

  25. G. Pinheiro, R. Chan, Gen. Relativ. Gravit. 45, 243 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M.C. Kweyama, S.D. Maharaj, K.S. Govinder, Nonlinear Anal., Real World Appl. 13, 1721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. K.S. Govinder, P.G.L. Leach, S.D. Maharaj, Int. J. Theor. Phys. 34, 625 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.C. Kweyama, K.S. Govinder, S.D. Maharaj, Class. Quantum Gravity 28, 105005 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  29. M.C. Kweyama, K.S. Govinder, S.D. Maharaj, J. Math. Phys. 53, 033707 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  30. P.G.L. Leach, S.D. Maharaj, J. Math. Phys. 33, 2023 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A.M. Msomi, K.S. Govinder, S.D. Maharaj, J. Phys. A, Math. Gen. 43, 285203 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Dimas, D. Tsoubelis, in Proceedings of the 10th International Conference in Modern Group Analysis, University of Cyprus, Larnaca (2005)

    Google Scholar 

  33. G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002)

    MATH  Google Scholar 

  34. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  35. B.J. Cantwell, Introduction to Symmetry Analysis (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  36. P. Olver, Equivalence, Invariants and Symmetry (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  37. P. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

YN, KSG and SDM wish to thank the National Research Foundation and the University of KwaZulu-Natal for support. SDM acknowledges that this work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Maharaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyonyi, Y., Maharaj, S.D. & Govinder, K.S. New charged shear-free relativistic models with heat flux. Eur. Phys. J. C 73, 2637 (2013). https://doi.org/10.1140/epjc/s10052-013-2637-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2637-x

Keywords

Navigation