Advertisement

Hard thermal loops in static background fields

Regular Article - Theoretical Physics

Abstract

We discuss the high-temperature behavior of retarded thermal loops in static external fields. We employ an analytic continuation of the imaginary-time formalism and use a spectral representation of the thermal amplitudes. We show that, to all orders, the leading contributions of static hard thermal loops can be directly obtained by evaluating them at zero external energies and momenta.

Keywords

Analytic Continuation External Energy Wavelength Limit Thermal Contribution Collinear Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank FAPESP and CNPq (Brazil) for a grant.

References

  1. 1.
    J. Frenkel, J.C. Taylor, Nucl. Phys. B 334, 199 (1990) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. Frenkel, J.C. Taylor, Nucl. Phys. B 374, 156 (1992) MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    E. Braaten, R.D. Pisarski, Nucl. Phys. B 337, 569 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    E. Braaten, R.D. Pisarski, Nucl. Phys. B 339, 310 (1990) ADSCrossRefGoogle Scholar
  5. 5.
    J. Frenkel, S.H. Pereira, N. Takahashi, Phys. Rev. D 79, 085001 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    F.T. Brandt, J. Frenkel, J.C. Taylor, Nucl. Phys. B 814, 366 (2009) ADSCrossRefMATHGoogle Scholar
  7. 7.
    F.T. Brandt, J. Frenkel, Braz. J. Phys. 42, 425 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    R. Francisco, J. Frenkel, Phys. Lett. B 722, 157 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Blaizot, E. Iancu, Phys. Rep. 359, 355 (2002) ADSCrossRefMATHGoogle Scholar
  10. 10.
    F.T. Brandt, J.B. Siqueira, Phys. Rev. D 86, 105001 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    J.I. Kapusta, Finite Temperature Field Theory (Cambridge University Press, Cambridge, 1989) MATHGoogle Scholar
  12. 12.
    M.L. Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996) CrossRefGoogle Scholar
  13. 13.
    A. Das, Finite Temperature Field Theory (World Scientific, New York, 1997) CrossRefGoogle Scholar
  14. 14.
    T.S. Evans, Nucl. Phys. B 374, 340 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    N.P. Landsman, C.G. van Weert, Phys. Rep. 145, 141 (1987) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    T.S. Evans, Phys. Lett. B 252, 108 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Taylor, Phys. Rev. D 48, 958 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    F.T. Brandt, J. Frenkel, J.C. Taylor, Phys. Rev. D 44, 1801 (1991) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    T. Grandou, M. Le Bellac, D. Poizat, Nucl. Phys. B 358, 408 (1991) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations