Skip to main content

Measurement of the atmospheric ν μ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

Abstract

Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric \(\nu_{\mu} + \bar{\nu}_{\mu}\) energy spectrum in the energy range 0.1–200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ∼25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index γ meas=3.58±0.12. With the present statistics the contribution of prompt neutrinos cannot be established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Y. Fukuda et al., Phys. Rev. Lett. 82, 2644 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    M. Ambrosio et al., Phys. Lett. B 434, 451 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    M. Sanchez et al., Phys. Rev. D 68, 113004 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    S. Adrián-Martínez et al., Phys. Lett. B 714, 224 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    M.G. Aartsen et al., Measurement of atmospheric neutrino oscillations with IceCube. Subm to PRL. arXiv:1305.3909v1 [hep-ex]

  6. 6.

    E.Kh. Akhmedov et al., J. High Energy Phys. 02, 082 (2013)

    MathSciNet  ADS  Article  Google Scholar 

  7. 7.

    D. Morgan et al., Astropart. Phys. 29, 345 (2008)

    ADS  Article  Google Scholar 

  8. 8.

    G. Battistoni et al., Phys. Lett. B 615, 14 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    K. Daum et al., Z. Phys. C 66, 417 (1995)

    ADS  Article  Google Scholar 

  10. 10.

    C. Gonzalez-Garcia, M. Maltoni, J. Rojo, J. High Energy Phys. 10, 75 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    R. Abbasi et al., Phys. Rev. D 79, 102005 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  12. 12.

    R. Abbasi et al., Astropart. Phys. 34, 48 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    R. Abbasi et al., Phys. Rev. D 83, 012001 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    T. Chiarusi, M. Spurio, Eur. Phys. J. C 65, 649 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    M. Ageron et al., Nucl. Instrum. Methods Phys. Res., Sect. A 656, 11 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    J.A. Aguilar et al., Phys. Lett. B 696, 16 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    S. Adrián-Martínez et al., Astropart. Phys. 760, 53 (2013)

    Article  Google Scholar 

  18. 18.

    L.V. Volkova, G.T. Zatsepin, Sov. J. Nucl. Phys. 37, 212 (1980)

    Google Scholar 

  19. 19.

    T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1991). ISBN 978-0521339315

    Google Scholar 

  20. 20.

    G.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins, T. Stanev, Phys. Rev. D 70, 023006 (2004). The extension of high energy is in 2009. http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/

    ADS  Article  Google Scholar 

  21. 21.

    M. Honda et al., Phys. Rev. D 75, 043006 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  22. 22.

    G.D. Barr et al., Phys. Rev. D 74, 094009 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    C.G.S. Costa, Astropart. Phys. 16, 193 (2001)

    ADS  Article  Google Scholar 

  24. 24.

    A. Martin et al., Acta Phys. Pol. B 34, 3273 (2003)

    ADS  Google Scholar 

  25. 25.

    R. Enberg et al., Phys. Rev. D 78, 043005 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    P. Amram et al., Nucl. Instrum. Methods Phys. Res., Sect. A 484, 369 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 555, 132 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 622, 59 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 570, 106 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    S. Adrián-Martínez et al., J. Instrum. 7, T08002 (2012)

    Article  Google Scholar 

  31. 31.

    M. Ageron et al., Nucl. Instrum. Methods Phys. Res., Sect. A 578, 498 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    J.A. Aguilar et al., Astropart. Phys. 34, 539 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    S. Klimushin, E. Bugaev, I. Sokalski, in Proceedings of the 27th ICRC, Hamburg, Germany (2001). arXiv:hep-ph/0106010

    Google Scholar 

  34. 34.

    D. Palioselitis, Measurement of the atmospheric neutrino energy spectrum. PhD thesis, University of Amsterdam. http://antares.in2p3.fr/Publications/thesis/2012/PhDThesis_Palioselitis.pdf

  35. 35.

    F. Schüssler for the ANTARES Collaboration, Energy reconstruction in neutrino telescopes. ICRC 2013, ID 421

  36. 36.

    A.N. Tikhonov, Sov. Math. 4, 1035 (1963)

    Google Scholar 

  37. 37.

    A. Hocker, V. Kartvelishvili, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996)

    ADS  Article  Google Scholar 

  38. 38.

    G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995)

    ADS  Article  Google Scholar 

  39. 39.

    http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html

  40. 40.

    http://root.cern.ch

  41. 41.

    J. Brunner, Antares simulation tools. 1st VLVnT workshop, Amsterdam, The Netherlands, 5–8 Oct (2003). http://www.vlvnt.nl/proceedings/

  42. 42.

    J. Pumplin et al., J. High Energy Phys. 07, 012 (2002)

    ADS  Article  Google Scholar 

  43. 43.

    Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, Astropart. Phys. 25, 1 (2006)

    ADS  Article  Google Scholar 

  44. 44.

    G. Carminati, M. Bazzotti, A. Margiotta, M. Spurio, Comput. Phys. Commun. 179, 915 (2008)

    ADS  Article  Google Scholar 

  45. 45.

    L.A. Fusco. Master thesis, University of Bologna. http://antares.in2p3.fr/Publications/thesis/2012/Master_Fusco.pdf

  46. 46.

    J.A. Aguilar et al., Astropart. Phys. 33, 86 (2010)

    ADS  Article  Google Scholar 

  47. 47.

    J.A. Aguilar et al., Astropart. Phys. 34, 179 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  48. 48.

    M. Ambrosio et al., Eur. Phys. J. C 36, 323 (2004)

    Article  Google Scholar 

  49. 49.

    R. Abbasi et al., Phys. Rev. D 84, 082001 (2011)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat á l’énergie atomique et aux energies alternatives (CEA), Agence National de la Recherche (ANR), Commission Europénne (FEDER fund and Marie Curie Program), Région Alsace (contrat CPER), Région Provence-Alpes-Côte d’Azur, Département du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium für Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), The Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS-UEFISCDI), Romania; Ministerio de Ciencia e Innovación (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l’Oriental, Morocco. Technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities is acknowledged.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. Fusco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adrián-Martínez, S., Albert, A., Al Samarai, I. et al. Measurement of the atmospheric ν μ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. Eur. Phys. J. C 73, 2606 (2013). https://doi.org/10.1140/epjc/s10052-013-2606-4

Download citation

Keywords

  • Atmospheric Neutrino
  • Neutrino Energy
  • Response Matrix
  • Neutrino Flux
  • Muon Energy