Advertisement

Generalized bootstrap equations and possible implications for the NLO odderon

  • J. Bartels
  • G. P. Vacca
Regular Article - Theoretical Physics

Abstract

We formulate and discuss generalized bootstrap equations in nonabelian gauge theories. They are shown to hold in the leading logarithmic approximation. Since their validity is related to the self-consistency of the Steinmann relations for inelastic production amplitudes they can be expected to be valid also in NLO. Specializing to the N=4 SYM, we show that the validity in NLO of these generalized bootstrap equations allows to find the NLO odderon solution with intercept exactly at one, a result which is valid also for the planar limit of QCD.

Keywords

Color Singlet Color Octet Bootstrap Condition Reggeized Gluon Bootstrap Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of us, J.B., gratefully acknowledges the hospitality of the INFN Section of Bologna where most of this work has been done.

References

  1. 1.
    V.S. Fadin, E.A. Kuraev, L.N. Lipatov, Phys. Lett. B 60, 50 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 71, 840 (1976). Sov. Phys. JETP 44, 443 (1976) Google Scholar
  3. 3.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 72, 377 (1977). 45, 199 (1977) MathSciNetGoogle Scholar
  4. 4.
    Ya.Ya. Balitskii, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) Google Scholar
  5. 5.
    M. Braun, G.P. Vacca, Phys. Lett. B 454, 319 (1999). hep-ph/9810454 ADSCrossRefGoogle Scholar
  6. 6.
    M. Braun, G.P. Vacca, Phys. Lett. B 477, 156 (2000). hep-ph/9910432 ADSCrossRefGoogle Scholar
  7. 7.
    V.S. Fadin, A. Papa, Nucl. Phys. B 640, 309 (2002). hep-ph/0206079 ADSCrossRefMATHGoogle Scholar
  8. 8.
    J. Bartels, V.S. Fadin, R. Fiore, Nucl. Phys. B 672, 329 (2003). hep-ph/0307076 ADSCrossRefMATHGoogle Scholar
  9. 9.
    M.G. Kozlov, A.V. Reznichenko, V.S. Fadin, Phys. At. Nucl. 74, 758 (2011). Yad. Fiz. 74, 784 (2011) CrossRefGoogle Scholar
  10. 10.
    M.G. Kozlov, A.V. Reznichenko, V.S. Fadin, Phys. At. Nucl. 75, 493 (2012) CrossRefGoogle Scholar
  11. 11.
    J. Bartels, M. Wusthoff, Z. Phys. C 66, 157 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Braun, G.P. Vacca, Eur. Phys. J. C 6, 147 (1999). hep-ph/9711486 ADSGoogle Scholar
  13. 13.
    J. Bartels, C. Ewerz, J. High Energy Phys. 9909, 026 (1999). hep-ph/9908454 ADSCrossRefGoogle Scholar
  14. 14.
    J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Lett. B 477, 178 (2000). hep-ph/9912423 ADSCrossRefGoogle Scholar
  15. 15.
    J. Bartels, V.S. Fadin, L.N. Lipatov, G.P. Vacca, Nucl. Phys. B 867, 827 (2013). arXiv:1210.0797 [hep-ph] ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.INFN Sezione di BolognaBolognaItaly

Personalised recommendations