Charm quark mass dependence in a global QCD analysis

Regular Article - Theoretical Physics

Abstract

We study the effect of the charm quark mass in the CTEQ global analysis of parton distribution functions (PDFs) of the proton. Constraints on the \(\overline{\mathrm{MS}}\) mass of the charm quark are examined at the next-to-next-to-leading order (NNLO) accuracy in the S-ACOT-χ heavy-quark factorization scheme. The value of the charm quark mass from the hadronic scattering data in the CT10 NNLO fit, including semi-inclusive charm production in DIS at HERA collider, is found to agree with the world average value. Various approaches for constraining m c in the global analysis and impact on LHC cross sections are reviewed.

Keywords

Pole Mass Charm Production Charm Quark Mass Charm Mass Auxiliary Scale 

Notes

Acknowledgements

This work was supported by the U.S. DOE Early Career Research Award DE-SC0003870 by Lightner-Sams Foundation. We thank Achim Geiser for the critical reading of the manuscript and appreciate detailed discussions with Karin Daum, Joey Huston, Hung-Liang Lai, Katerina Lipka, Fred Olness, Jon Pumplin, Carl Schmidt, Dan Stump, and C.-P. Yuan. P.N. thanks DESY (Hamburg) for hospitality and financial support of his visit during the work on this project.

References

  1. 1.
    W.-K. Tung, H.-L. Lai, A. Belyaev, J. Pumplin, D. Stump, C.-P. Yuan, J. High Energy Phys. 0702, 053 (2007). arXiv:hep-ph/0611254 ADSCrossRefGoogle Scholar
  2. 2.
    P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, C.-P. Yuan, Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 ADSCrossRefGoogle Scholar
  3. 3.
    F. Aaron, et al. (H1 and ZEUS Collaboration), J. High Energy Phys. 1001, 109 (2010). arXiv:0911.0884 ADSCrossRefGoogle Scholar
  4. 4.
    H. Abramowicz et al. (H1 Collaboration ZEUS Collaboration), (2012). arXiv:1211.1182
  5. 5.
    J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente, O. Sampayo, Nucl. Phys. B 353, 337 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    W. van Neerven, E. Zijlstra, Phys. Lett. B 272, 127 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    E. Zijlstra, W. van Neerven, Phys. Lett. B 273, 476 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    E. Laenen, S. Riemersma, J. Smith, W. van Neerven, Nucl. Phys. B 392, 162 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    S. Riemersma, J. Smith, W. van Neerven, Phys. Lett. B 347, 143 (1995). arXiv:hep-ph/9411431 ADSCrossRefGoogle Scholar
  10. 10.
    B. Harris, J. Smith, Nucl. Phys. B 452, 109 (1995). arXiv:hep-ph/9503484 ADSCrossRefGoogle Scholar
  11. 11.
    S. Moch, J. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005). arXiv:hep-ph/0411112 ADSCrossRefGoogle Scholar
  12. 12.
    J. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B 724, 3 (2005). arXiv:hep-ph/0504242 MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    J. Blumlein, A. De Freitas, W. van Neerven, S. Klein, Nucl. Phys. B 755, 272 (2006). arXiv:hep-ph/0608024 ADSCrossRefGoogle Scholar
  14. 14.
    I. Bierenbaum, J. Blumlein, S. Klein, Nucl. Phys. B 820, 417 (2009). arXiv:0904.3563 ADSCrossRefMATHGoogle Scholar
  15. 15.
    J. Ablinger, J. Blumlein, S. Klein, C. Schneider, F. Wissbrock, Nucl. Phys. B 844, 26 (2011). arXiv:1008.3347 ADSCrossRefMATHGoogle Scholar
  16. 16.
    J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider, Nucl. Phys. B 866, 196 (2013). arXiv:1205.4184 ADSCrossRefGoogle Scholar
  17. 17.
    J. Ablinger, J. Blumlein, S. Klein, C. Schneider, F. Wissbrock, (2011). arXiv:1106.5937
  18. 18.
    J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider et al., PoS RADCOR2011, 031 (2011). arXiv:1202.2700
  19. 19.
    J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider et al., Nucl. Phys. B 864, 52 (2012). arXiv:1206.2252 MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, S. Klein et al., (2012). arXiv:1212.5950
  21. 21.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    M. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Phys. Rev. D 50, 3102 (1994). arXiv:hep-ph/9312319 ADSCrossRefGoogle Scholar
  23. 23.
    M. Buza, Y. Matiounine, J. Smith, W. van Neerven, Eur. Phys. J. C 1, 301 (1998). arXiv:hep-ph/9612398 ADSGoogle Scholar
  24. 24.
    A. Chuvakin, J. Smith, W. van Neerven, Phys. Rev. D 61, 096004 (2000). arXiv:hep-ph/9910250 ADSCrossRefGoogle Scholar
  25. 25.
    R. Thorne, R. Roberts, Phys. Lett. B 421, 303 (1998). arXiv:hep-ph/9711223 ADSCrossRefGoogle Scholar
  26. 26.
    R. Thorne, R. Roberts, Phys. Rev. D 57, 6871 (1998). arXiv:hep-ph/9709442 ADSCrossRefGoogle Scholar
  27. 27.
    R. Thorne, Phys. Rev. D 73, 054019 (2006). arXiv:hep-ph/0601245 ADSCrossRefGoogle Scholar
  28. 28.
    S. Forte, E. Laenen, P. Nason, J. Rojo, Nucl. Phys. B 834, 116 (2010). arXiv:1001.2312 ADSCrossRefMATHGoogle Scholar
  29. 29.
    M. Guzzi, P.M. Nadolsky, H.-L. Lai, C.-P. Yuan, Phys. Rev. D 86, 053005 (2012). arXiv:1108.5112 ADSCrossRefGoogle Scholar
  30. 30.
    M. Kramer, F.I. Olness, D.E. Soper, Phys. Rev. D 62, 096007 (2000). arXiv:hep-ph/0003035 ADSCrossRefGoogle Scholar
  31. 31.
    W.-K. Tung, S. Kretzer, C. Schmidt, J. Phys. G 28, 983 (2002). arXiv:hep-ph/0110247 ADSCrossRefGoogle Scholar
  32. 32.
    J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.-P. Yuan, (2013). arXiv:1302.6246
  33. 33.
    A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 70, 51 (2010). arXiv:1007.2624 ADSCrossRefGoogle Scholar
  34. 34.
    S. Alekhin, J. Blumlein, K. Daum, K. Lipka, S. Moch, (2012). arXiv:1212.2355
  35. 35.
    N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys. C 48, 673 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    K. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617 (2000). arXiv:hep-ph/9911434 ADSCrossRefGoogle Scholar
  37. 37.
    K. Melnikov, T.v. Ritbergen, Phys. Lett. B 482, 99 (2000). arXiv:hep-ph/9912391 ADSCrossRefGoogle Scholar
  38. 38.
    P. Marquard, L. Mihaila, J. Piclum, M. Steinhauser, Nucl. Phys. B 773, 1 (2007). arXiv:hep-ph/0702185 ADSCrossRefMATHGoogle Scholar
  39. 39.
    I.I. Bigi, M.A. Shifman, N. Uraltsev, A. Vainshtein, Phys. Rev. D 50, 2234 (1994). arXiv:hep-ph/9402360 ADSCrossRefGoogle Scholar
  40. 40.
    M. Beneke, V.M. Braun, Nucl. Phys. B 426, 301 (1994). arXiv:hep-ph/9402364 ADSCrossRefGoogle Scholar
  41. 41.
    M. Beneke, Phys. Rep. 317, 1 (1999). arXiv:hep-ph/9807443 ADSCrossRefGoogle Scholar
  42. 42.
    P.M. Nadolsky, W.-K. Tung, Phys. Rev. D 79, 113014 (2009). arXiv:0903.2667 ADSCrossRefGoogle Scholar
  43. 43.
    G.P. Salam, J. Rojo, Comput. Phys. Commun. 180, 120 (2009). arXiv:0804.3755 ADSCrossRefGoogle Scholar
  44. 44.
    K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000). arXiv:hep-ph/0004189 ADSCrossRefMATHGoogle Scholar
  45. 45.
    S. Alekhin, S. Moch, Phys. Lett. B 699, 345 (2011). arXiv:1011.5790 ADSCrossRefGoogle Scholar
  46. 46.
    J.C. Collins, Phys. Rev. D 58, 094002 (1998). arXiv:hep-ph/9806259 ADSCrossRefGoogle Scholar
  47. 47.
    A. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 223, 485 (1989) ADSCrossRefGoogle Scholar
  48. 48.
    A. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 237, 592 (1990) ADSCrossRefGoogle Scholar
  49. 49.
    M. Arneodo et al. (New Muon Collaboration), Nucl. Phys. B 483, 3 (1997). arXiv:hep-ph/9610231 ADSCrossRefGoogle Scholar
  50. 50.
    J. Berge, H. Burkhardt, F. Dydak, R. Hagelberg, M. Krasny et al., Z. Phys. C 49, 187 (1991) CrossRefGoogle Scholar
  51. 51.
    U.-K. Yang et al. (CCFR/NuTeV Collaboration), Phys. Rev. Lett. 86, 2742 (2001). arXiv:hep-ex/0009041 ADSCrossRefGoogle Scholar
  52. 52.
    W. Seligman, C. Arroyo, L. de Barbaro, P. de Barbaro, A. Bazarko et al., Phys. Rev. Lett. 79, 1213 (1997). arXiv:hep-ex/9701017 ADSCrossRefGoogle Scholar
  53. 53.
    M. Goncharov et al. (NuTeV Collaboration), Phys. Rev. D 64, 112006 (2001). arXiv:hep-ex/0102049 ADSCrossRefGoogle Scholar
  54. 54.
    D.A. Mason, Ph. D. Thesis FERMILAB-THESIS-2006-01 UMI-32-11223 (2006) Google Scholar
  55. 55.
    C. Adloff et al. (H1 Collaboration), Phys. Lett. B 528, 199 (2002). arXiv:hep-ex/0108039 ADSCrossRefGoogle Scholar
  56. 56.
    G. Moreno, C. Brown, W. Cooper, D. Finley, Y. Hsiung et al., Phys. Rev. D 43, 2815 (1991) ADSCrossRefGoogle Scholar
  57. 57.
    R. Towell et al. (FNAL E866/NuSea Collaboration), Phys. Rev. D 64, 052002 (2001). arXiv:hep-ex/0103030 ADSCrossRefGoogle Scholar
  58. 58.
    J. Webb et al. (NuSea Collaboration), (2003). arXiv:hep-ex/0302019
  59. 59.
    F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 77, 2616 (1996) ADSCrossRefGoogle Scholar
  60. 60.
    D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 051104 (2005). arXiv:hep-ex/0501023 ADSCrossRefGoogle Scholar
  61. 61.
    V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 211801 (2008). arXiv:0807.3367 ADSCrossRefGoogle Scholar
  62. 62.
    V. Abazov et al. (D0 Collaboration), Phys. Rev. D 77, 011106 (2008). arXiv:0709.4254 ADSCrossRefGoogle Scholar
  63. 63.
    V. Abazov et al. (D0 Collaboration), Phys. Lett. B 658, 112 (2008). arXiv:hep-ex/0608052 ADSCrossRefGoogle Scholar
  64. 64.
    T.A. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 692, 232 (2010). arXiv:0908.3914 ADSCrossRefGoogle Scholar
  65. 65.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 78, 052006 (2008). arXiv:0807.2204 ADSCrossRefGoogle Scholar
  66. 66.
    V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 062001 (2008). arXiv:0802.2400 ADSCrossRefGoogle Scholar
  67. 67.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 072004 (2012). arXiv:1109.5141 ADSCrossRefGoogle Scholar
  68. 68.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 014022 (2012). arXiv:1112.6297 ADSCrossRefGoogle Scholar
  69. 69.
    F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1579 (2011). arXiv:1012.4355 ADSCrossRefGoogle Scholar
  70. 70.
    B. Harris, J. Smith, Phys. Rev. D 57, 2806 (1998). arXiv:hep-ph/9706334 ADSCrossRefGoogle Scholar
  71. 71.
    S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 63, 171 (2009). arXiv:0812.3775 ADSCrossRefGoogle Scholar
  72. 72.
    S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 65, 65 (2010). arXiv:0904.3487 ADSCrossRefGoogle Scholar
  73. 73.
    F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 65, 89 (2010). arXiv:0907.2643 ADSCrossRefGoogle Scholar
  74. 74.
    F. Aaron et al. (H1 Collaboration), Phys. Lett. B 686, 91 (2010). arXiv:0911.3989 ADSCrossRefGoogle Scholar
  75. 75.
    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 51, 271 (2007). arXiv:hep-ex/0701023 ADSCrossRefGoogle Scholar
  76. 76.
    J. Breitweg et al. (ZEUS Collaboration), Eur. Phys. J. C 12, 35 (2000). arXiv:hep-ex/9908012 ADSCrossRefGoogle Scholar
  77. 77.
    S. Chekanov et al. (ZEUS Collaboration), Phys. Rev. D 69, 012004 (2004). arXiv:hep-ex/0308068 ADSCrossRefGoogle Scholar
  78. 78.
    F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1769 (2011). arXiv:1106.1028 ADSCrossRefGoogle Scholar
  79. 79.
    J. Pumplin, D. Stump, J. Huston, H.-L. Lai, P.M. Nadolsky, W.-K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195 ADSCrossRefGoogle Scholar
  80. 80.
    H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 ADSCrossRefGoogle Scholar
  81. 81.
    J.C. Collins, J. Pumplin, (2001). arXiv:hep-ph/0105207
  82. 82.
    P. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 2002) Google Scholar
  83. 83.
    R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte et al., Nucl. Phys. B 855, 608 (2012). arXiv:1108.1758 ADSCrossRefGoogle Scholar
  84. 84.
    J. Pumplin, Phys. Rev. D 80, 034002 (2009). arXiv:0904.2425 ADSCrossRefGoogle Scholar
  85. 85.
    J. Pumplin, Phys. Rev. D 81, 074010 (2010). arXiv:0909.0268 ADSCrossRefGoogle Scholar
  86. 86.
    R.D. Ball, S. Carrazza, L. Del Debbio, S. Forte, J. Gao et al., (2012). arXiv:1211.5142
  87. 87.
    R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011). arXiv:1011.3540 ADSCrossRefGoogle Scholar
  88. 88.
    R. Gavin, Y. Li, F. Petriello, S. Quackenbush, (2012). arXiv:1201.5896
  89. 89.
    C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos, J. High Energy Phys. 1112, 058 (2011). arXiv:1107.0683 ADSCrossRefGoogle Scholar
  90. 90.
    P. Baernreuther, M. Czakon, A. Mitov, Phys. Rev. Lett. 109, 132001 (2012). arXiv:1204.5201 ADSCrossRefGoogle Scholar
  91. 91.
    M. Czakon, P. Fiedler, A. Mitov, (2013). arXiv:1303.6254
  92. 92.
    H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.-P. Yuan, Phys. Rev. D 82, 054021 (2010). arXiv:1004.4624 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsSouthern Methodist UniversityDallasUSA
  2. 2.Deutsches Elektronen Synchrotron DESYHamburgGermany

Personalised recommendations