Lagrangian alternative to QCD string

Regular Article - Theoretical Physics

Abstract

The spectrum of radially excited hadrons provides much information about the confinement forces in QCD. The confinement is realized most naturally in terms of the QCD string whose quantization gives rise to the radially excited modes. We propose an alternative framework for the description of the excited spectrum. Namely we put forward some effective field models in which the hadrons acquire masses due to interaction with a scalar field modeling the non-perturbative gluon vacuum. The effective potential for this field is periodic with an infinite number of non-equivalent vacua. The radially excited hadrons emerge as elementary excitations over different vacua. We construct explicit examples for such effective theories in the meson sector. An interesting byproduct of the considered models is the existence of a classical field configuration in each vacuum. Depending on the model, it can represent a domain wall, Nielsen–Olesen vortex or ’t Hooft–Polyakov monopole. In the pure scalar sector, it is shown that the first quantum correction leads to splitting of the radially excited modes into two nearly degenerate states. Such a phenomenon has some phenomenological support. The presented approach may also be viewed as an alternative framework to the bottom-up AdS/QCD models where the radial excitations appear on the classical level as well.

Keywords

Quantum Correction Effective Field Theory Chiral Symmetry Breaking Scalar Meson Radial Excitation 

Notes

Acknowledgements

The work was partially supported by the Saint Petersburg State University grants 11.38.660.2013 and 11.48.1447.2012, by the RFBR grants 13-02-00127-a and 12-02-01121-a, and by the Dynasty Foundation.

References

  1. 1.
    Y. Nambu, Phys. Rev. D 10, 4262 (1974) ADSCrossRefGoogle Scholar
  2. 2.
    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    N. Isgur, J.E. Paton, Phys. Rev. D 31, 2910 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    D. LaCourse, M.G. Olsson, Phys. Rev. D 39, 2751 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    A.Yu. Dubin, A.B. Kaidalov, Yu.A. Simonov, Phys. Lett. B 323, 41 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    Yu.S. Kalashnikova, A.V. Nefediev, Yu.A. Simonov, Phys. Rev. D 64, 014037 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Allen, C. Goebel, M.G. Olsson, S. Veseli, Phys. Rev. D 64, 094011 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    M. Baker, R. Steinke, Phys. Rev. D 65, 094042 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    F. Buisseret, Phys. Rev. C 76, 025206 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. ’t Hooft, Nucl. Phys. B 72, 461 (1974) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    E. Witten, Nucl. Phys. B 160, 57 (1979) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Shifman, hep-ph/0507246
  13. 13.
    A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Phys. Rev. D 62, 051502(R) (2000) ADSCrossRefGoogle Scholar
  14. 14.
    D.V. Bugg, Phys. Rep. 397, 257 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Afonin, Eur. Phys. J. A 29, 327 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    S.S. Afonin, Mod. Phys. Lett. A 22, 1359 (2007) CrossRefGoogle Scholar
  19. 19.
    S.S. Afonin, Phys. Lett. B 639, 258 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    S.S. Afonin, Phys. Rev. C 76, 015202 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Afonin, Int. J. Mod. Phys. A 22, 4537 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    M. Shifman, A. Vainshtein, Phys. Rev. D 77, 034002 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    L.Ya. Glozman, Phys. Rep. 444, 1 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982) MATHGoogle Scholar
  25. 25.
    D.W. McLaughlin, A.C. Scott, J. Math. Phys. 14, 1817 (1973) MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    R.K. Dodd, R.K. Bullough, Proc. R. Soc. Lond. A 351, 499 (1976) MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    H.B. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973) ADSCrossRefGoogle Scholar
  28. 28.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    P. Ramond, Field Theory: A Modern Primer (Westview Press, Boulder, 2001) Google Scholar
  30. 30.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995) Google Scholar
  31. 31.
    H.B. Meyer, Glueball Regge trajectories. Ph.D. thesis. hep-lat/0508002
  32. 32.
    E. Gregory et al., J. High Energy Phys. 1210, 170 (2012) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    L.P.S. Singh, C.R. Hagen, Phys. Rev. D 9, 898 (1974) ADSCrossRefGoogle Scholar
  34. 34.
    M. Baker, R. Steinke, Phys. Rev. D 63, 094013 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Polyakov, Zh. Eksp. Teor. Fiz. 68, 1975 (1975) Google Scholar
  36. 36.
    G. ’t Hooft, Nucl. Phys. B 79, 276 (1974) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.V.A. Fock Department of Theoretical PhysicsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations