Advertisement

Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

  • A. P. Baeta Scarpelli
  • T. Mariz
  • J. R. Nascimento
  • A. Yu. Petrov
Regular Article - Theoretical Physics

Abstract

In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities.

Keywords

Lorentz and Poincaré invariance Gauge field theories 

Notes

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The work by A.Yu.P. has been supported by the CNPq project No. 303438/2012-6.

References

  1. 1.
    V.A. Kostelecky, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989) ADSCrossRefGoogle Scholar
  2. 2.
    V.A. Kostelecky, S. Samuel, Gravitational phenomenology in higher dimensional theories and strings. Phys. Rev. D 40, 1886 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    S. Carroll, G. Field, R. Jackiw, Limits on a Lorentz and parity violating modification of electrodynamics. Phys. Rev. D 41, 1231 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    D. Colladay, V.A. Kostelecky, CPT violation and the standard model. Phys. Rev. D 55, 6760 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    D. Colladay, V.A. Kostelecky, Lorentz violating extension of the standard model. Phys. Rev. D 58, 116002 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    R. Jackiw, V.A. Kostelecky, Radiatively induced Lorentz and CPT violation in electrodynamics. Phys. Rev. Lett. 82, 3572 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    S. Coleman, S.L. Glashow, High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    M. Pérez-Victoria, Exact calculation of the radiatively induced Lorentz and CPT violation in QED. Phys. Rev. Lett. 83, 2518 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    R. Jackiw, When radiative corrections are finite but undetermined. Int. J. Mod. Phys. B 14, 2011 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Chung, Lorentz and CPT violating Chern–Simons term in the formulation of functional integral. Phys. Rev. D 60, 127901 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    B. Altschul, Failure of gauge invariance in the nonperturbative formulation of massless Lorentz violating QED. Phys. Rev. D 69, 125009 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    B. Altschul, Gauge invariance and the Pauli–Villars regulator in Lorentz- and CPT-violating electrodynamics. Phys. Rev. D 70, 101701 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    M. Gomes, J.R. Nascimento, E. Passos, A.Yu. Petrov, A.J. da Silva, On the induction of the four-dimensional Lorentz-breaking non-Abelian Chern–Simons action. Phys. Rev. D 76, 047701 (2007) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.R. Nascimento, E. Passos, A.Yu. Petrov, F.A. Brito, Lorentz-CPT violation, radiative corrections and finite temperature. J. High Energy Phys. 0706, 016 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    R. Jackiw, S.-Y. Pi, Chern–Simons modification of general relativity. Phys. Rev. D 68, 104012 (2003) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    M. Gomes, T. Mariz, J.R. Nascimento, E. Passos, A.Yu. Petrov, A.J. da Silva, On the ambiguities in the effective action in Lorentz-violating gravity. Phys. Rev. D 78, 025029 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    M. Gomes, J.R. Nascimento, A.Yu. Petrov, A.J. da Silva, On the aether-like Lorentz-breaking actions. Phys. Rev. D 81, 045018 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    M. Gomes, J.R. Nascimento, A.Yu. Petrov, A.J. da Silva, On the Aether-like Lorentz-breaking action for the electromagnetic field. arXiv:1008.0607
  19. 19.
    H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayel-Neto, Non-minimal coupling to a Lorentz-violating background and quantum-mechanical implications. Eur. Phys. J. C 41, 421 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayel-Neto, Classical solutions in a Lorentz-violating scenario of Maxwell–Chern–Simons–Proca electrodynamics. Eur. Phys. J. C 42, 127 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayel-Neto, F.M.O. Mouchereck, Lorentz-violating corrections on the hydrogen spectrum induced by a non-minimal coupling. Phys. Rev. D 74, 065009 (2006) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    H. Belich, L.P. Colatto, T. Costa-Soares, J.A. Helayel-Neto, M.T.D. Orlando, Magnetic moment generation from non-minimal couplings in a scenario with Lorentz-symmetry violation. Eur. Phys. J. C 62, 425 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    R. Casana, M.M. Ferreira, J.S. Rodrigues, M.R.O. Silva, Finite temperature CPT-even electrodynamics of the standard model extension. Phys. Rev. D 80, 085026 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    R. Casana, A.R. Gomes, M.M. Ferreira, P.R.D. Pinheiro, Gauge propagator and physical consistency of the CPT-even part of the standard model extension. Phys. Rev. D 80, 125040 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    R. Casana, E.S. Carvalho, M.M. Ferreira, Dimensional reduction of the CPT-even electromagnetic sector of the standard model extension. Phys. Rev. D 84, 045008 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    R. Casana, M.M. Ferreira, R.P.M. Moreira, Aspects of a planar nonbirefringent and CPT-even electrodynamics stemming from the standard model extension. Phys. Rev. D 84, 125014 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    G. Gazzola, H.G. Fargnoli, A.P. Baeta Scarpelli, M. Sampaio, M.C. Nemes, QED with minimal and nonminimal couplings: on the quantum generation of Lorentz violating terms in the pure photon sector. J. Phys. G 39, 035002 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    T. Mariz, J.R. Nascimento, A.Yu. Petrov, On the perturbative generation of the higher-derivative Lorentz-breaking terms. Phys. Rev. D 85, 125003 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    S. Carroll, H. Tam, Aether compactification. Phys. Rev. D 78, 044047 (2008) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    K. Fujikawa, Path integral measure for gauge invariant fermion theories. Phys. Rev. Lett. 42, 1195 (1979) ADSCrossRefGoogle Scholar
  31. 31.
    A.P. Baeta Scarpelli, M. Sampaio, M.C. Nemes, B. Hiller, Gauge invariance and the CPT and Lorentz violating induced Chern–Simons-like term in extended QED. Eur. Phys. J. C 56, 571 (2008) ADSCrossRefMATHGoogle Scholar
  32. 32.
    T. Mariz, Radiatively induced Lorentz-violating operator of mass dimension five in QED. Phys. Rev. D 83, 045018 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J. Leite, T. Mariz, Induced Lorentz-violating terms at finite temperature. Europhys. Lett. 99, 21003 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    R. Myers, M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory. Phys. Rev. Lett. 90, 211601 (2003) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    A.P. Baêta Scarpelli, QED with chiral nonminimal coupling: aspects of Lorentz-violating quantum corrections. J. Phys. G 39, 125001 (2012) CrossRefGoogle Scholar
  36. 36.
    R. Casana, M.M. Ferreira, R.V. Maluf, F.E.P. dos Santos, Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term. arXiv:1302.2375 [hep-th]
  37. 37.
    L.C.T. Brito, H.G. Fargnoli, A.P. Baêta Scarpelli, Aspects of quantum corrections in a Lorentz-violating extension of the Abelian Higgs model. Phys. Rev. D 87, 125023 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    J. Alfaro, L.F. Urrutia, J.D. Vergara, Extended definition of the regulated Jacobian in the path integral calculation of anomalies. Phys. Lett. B 202, 121 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • A. P. Baeta Scarpelli
    • 1
  • T. Mariz
    • 2
  • J. R. Nascimento
    • 3
  • A. Yu. Petrov
    • 3
  1. 1.Departamento de Polícia FederalSetor Técnico-CientíficoSão PauloBrazil
  2. 2.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil
  3. 3.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations