(N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

  • Mauricio Cataldo
  • Fernanda Aróstica
  • Sebastian Bahamonde
Regular Article - Theoretical Physics

Abstract

In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann–Robertson–Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources.

Keywords

Polytropic Index Wormhole Solution Traversable Wormhole Polytropic Equation Dimensional Extension 

Notes

Acknowledgements

This work was partially supported by CONICYT through Grant FONDECYT No. 1080530 and by the Dirección de Investigación de la Universidad del Bio-Bío through grants No. DIUBB 121007 2/R and No. GI121407/VBC (MC).

References

  1. 1.
    M.S. Morris et al., Phys. Rev. Lett. 61, 1446 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988) MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking (AIP, New York, 1995) Google Scholar
  4. 4.
    A. Anabalon, A. Cisterna, Phys. Rev. D 85, 084035 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    G.A.S. Dias, J.P.S. Lemos, Phys. Rev. D 82, 084023 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    A.B. Balakin, J.P.S. Lemos, A.E. Zayats, Phys. Rev. D 81, 084015 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    M. Jamil, P.K.F. Kuhfittig, F. Rahaman, S.A. Rakib, Eur. Phys. J. C 67, 513 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    M. Jamil, M.U. Farooq, Int. J. Theor. Phys. 49, 835 (2010) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    E.F. Eiroa, Phys. Rev. D 80, 044033 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    J. Estevez-Delgado, T. Zannias, Int. J. Mod. Phys. A 23, 3165 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    M. Cataldo, P. Salgado, P. Minning, Phys. Rev. D 66, 124008 (2002) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Cataldo, P. Meza, P. Minning, Phys. Rev. D 83, 044050 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    S.H. Hendi, J. Math. Phys. 52, 042502 (2011) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S.H. Hendi, Can. J. Phys. 89, 281 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    I. Bochicchio, V. Faraoni, Phys. Rev. D 82, 044040 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    M. Jamil, M. Akbar. arXiv:0911.2556 [hep-th]
  17. 17.
    M. Jamil, M. Akbar, Int. J. Theor. Phys. 50, 1602 (2011) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    J. Hansen, D.i. Hwang, D.h. Yeom, J. High Energy Phys. 0911, 016 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    A. DeBenedictis, R. Garattini, F.S.N. Lobo, Phys. Rev. D 78, 104003 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    P.F. Gonzalez-Diaz, Phys. Rev. D 68, 084016 (2003) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F.S.N. Lobo, Phys. Rev. D 71, 124022 (2005) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    F.S.N. Lobo, Phys. Rev. D 73, 064028 (2006) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    O. Bertolami, R.Z. Ferreira, Phys. Rev. D 85, 104050 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    F. Darabi, Can. J. Phys. 90, 461 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    S.N. Sajadi, N. Riazi, Prog. Theor. Phys. 126, 753 (2011) ADSCrossRefMATHGoogle Scholar
  26. 26.
    M.H. Dehghani, S.H. Hendi, Gen. Relativ. Gravit. 41, 1853 (2009) MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    M. Jamil et al., Eur. Phys. J. C 67, 513 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    U.S. Nilsson, C. Uggla, Ann. Phys. 286, 292 (2001) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    S. Bayin, Phys. Rev. D 18, 2745 (1978) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    P.M. Sa, Phys. Lett. B 467, 40 (1999) MathSciNetADSCrossRefMATHGoogle Scholar
  32. 32.
    M. Cataldo et al., Phys. Rev. D 79, 024005 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    R.C. Myers, M.J. Perry, Ann. Phys. 172, 304 (1986) MathSciNetADSCrossRefMATHGoogle Scholar
  34. 34.
    C.P. Burgess, Class. Quantum Gravity 24, S795 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  35. 35.
    A. Kurek, M. Szydlowski, Astrophys. J. 675, 1 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    M. Douspis et al. (Archeops Collaboration), New Astron. Rev. 47, 755 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    M. Cataldo, S. del Campo, Phys. Rev. D 85, 104010 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Mauricio Cataldo
    • 1
  • Fernanda Aróstica
    • 2
  • Sebastian Bahamonde
    • 2
  1. 1.Departamento de Física, Facultad de CienciasUniversidad del Bío-BíoConcepciónChile
  2. 2.Departamento de FísicaUniversidad de ConcepciónConcepciónChile

Personalised recommendations