Skip to main content
Log in

Nonbaryonic dark matter and scalar field coupled with a transversal interaction plus decoupled radiation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We analyze a universe filled with interacting dark matter, a scalar field accommodated as dark radiation along with dark energy plus a decoupled radiation term within the framework of the spatially flat Friedmann–Robertson–Walker (FRW) spacetime. We work in a three-dimensional internal space spanned by the interaction vector and use a transversal interaction Q t for solving the source equation in order to find all the interacting component energy densities. We asymptotically reconstruct the scalar field and potential from an early radiation era to the late dominate dark energy one, passing through an intermediate epoch dominated by dark matter. We apply the χ 2 method to the updated observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model fulfills the severe bound of Ω ϕ (z≃1100)<0.018 at 2σ level, is consistent with the recent analysis that includes cosmic microwave background anisotropy measurements from the Atacama Cosmology Telescope and the South Pole Telescope along with the future constraints achievable by Planck and CMBPol experiments, and satisfies the stringent bound Ω ϕ (z≃1010)<0.04 at 2σ level in the big-bang nucleosynthesis epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, Dark Energy (Wiley-VCH, Berlin, 2010). ISBN 978-3-527-40941-9

    Book  Google Scholar 

  2. P. Ruiz-Lapuente (ed.), Dark Energy: Observational and Theoretical Approaches (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  3. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  7. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  8. E. Jullo, P. Natarajan, J.P. Kneib, A. d’Aloisio, M. Limousin, J. Richard, C. Schimd, Science 329(5994), 924–927 (2010). arXiv:1008.4802

    Article  ADS  Google Scholar 

  9. D. Clowe et al., Astrophys. J. Lett. 648, L109 (2006)

    Article  ADS  Google Scholar 

  10. M. Bradac et al., Astrophys. J. 687, 959 (2008)

    Article  ADS  Google Scholar 

  11. R.W. Schnee, arXiv:1101.5205

  12. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  13. L.P. Chimento, Phys. Rev. D 81, 043525 (2010)

    Article  ADS  Google Scholar 

  14. L.P. Chimento, M.G. Richarte, Phys. Rev. D 86, 103501 (2012)

    Article  ADS  Google Scholar 

  15. N. Cruz, S. Lepe, F. Pena, Phys. Lett. B 663, 338 (2008)

    Article  ADS  Google Scholar 

  16. M. Jamil, E.N. Saridakis, M.R. Setare, Phys. Rev. D 81, 023007 (2010)

    Article  ADS  Google Scholar 

  17. S. Chen, J. Jing, Class. Quantum Gravity 26, 155006 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Jamil, D. Momeni, M.A. Rashid, arXiv:1107.1558v2

  19. N. Cruz, S. Lepe, F. Pena, Phys. Lett. B 699, 135 (2011)

    Article  ADS  Google Scholar 

  20. M. Jamil, F. Rahaman, Eur. Phys. J. C 64, 97–105 (2009)

    Article  ADS  Google Scholar 

  21. L.P. Chimento, M.G. Richarte, Phys. Rev. D 84, 123507 (2011)

    Article  ADS  Google Scholar 

  22. L.P. Chimento, M.G. Richarte, Phys. Rev. D 85, 127301 (2012)

    Article  ADS  Google Scholar 

  23. K. Liao, Z. Li, J. Ming, Z.-H. Zhu, Phys. Lett. B 718, 1166–1170 (2013)

    Article  ADS  Google Scholar 

  24. O. Farooq, B. Ratra, arXiv:1301.5243

  25. O. Farooq, B. Ratra, arXiv:1211.4253

  26. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, J. Cosmol. Astropart. Phys. 1207, 053 (2012)

    Article  ADS  Google Scholar 

  27. A. Nunes, J.P. Mimoso, T.C. Charters, Phys. Rev. D 63, 083506 (2001)

    Article  ADS  Google Scholar 

  28. V. Pettorino, L. Amendola, C. Baccigalupi, C. Quercellini, Phys. Rev. D 86, 103507 (2012)

    Article  ADS  Google Scholar 

  29. S. Kumar, S. Panda, A.A. Sen, arXiv:1302.1331

  30. L. Amendola, M. Baldi, C. Wetterich, Phys. Rev. D 78, 023015 (2008)

    Article  ADS  Google Scholar 

  31. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). astro-ph/0412269

    Article  ADS  Google Scholar 

  32. L. Samushia, B. Ratra, Astrophys. J. 650, L5 (2006)

    Article  ADS  Google Scholar 

  33. D. Stern et al., arXiv:0907.3149

  34. W.H. Press et al., Numerical Recipes in C (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  35. A.G. Riess et al., Astrophys. J. 699, 539 (2009). arXiv:0905.0695

    Article  ADS  Google Scholar 

  36. J. Dunkley et al., Astrophys. J. 739, 52 (2011). arXiv:1009.0866

    Article  ADS  Google Scholar 

  37. G. Chen, B. Ratra, Publ. Astron. Soc. Pac. 123, 1127 (2011). arXiv:1105.5206

    Article  ADS  Google Scholar 

  38. E. Calabrese, M. Archidiacono, A. Melchiorri, B. Ratra, arXiv:1205.6753

  39. E. Komatsu, et al., arXiv:1001.4538 [astro-ph.CO]

  40. R. Giostri, M. Vargas dos Santos, I. Waga, R.R.R. Reis, M.O. Calvão, B.L. Lago, arXiv:1203.3213

  41. L.P. Chimento, M. Forte, R. Lazkoz, M.G. Richarte, Phys. Rev. D 79, 043502 (2009)

    Article  ADS  Google Scholar 

  42. E. Calabrese, D. Huterer, E.V. Linder, A. Melchiorri, L. Pagano, Phys. Rev. D 83, 123504 (2011)

    Article  ADS  Google Scholar 

  43. E. Calabrese, R. de Putter, D. Huterer, E.V. Linder, A. Melchiorri, Phys. Rev. D 83, 023011 (2011)

    Article  ADS  Google Scholar 

  44. V. Pettorino, L. Amendola, C. Wetterich, arXiv:1301.5279

  45. C.L. Reichardt, R. de Putter, O. Zahn, Z. Hou, arXiv:1110.5328

  46. Z. Hou et al., arXiv:1212.6267

  47. E. Di Valentino, S. Galli, M. Lattanzi, A. Melchiorri, P. Natoli, L. Pagano, N. Said, arXiv:1301.7343

  48. M. Archidiacono, E. Giusarma, A. Melchiorri, O. Mena, arXiv:1303.0143

  49. E. Calabrese et al., arXiv:1302.1841

  50. J. Lu, L. Xu, M. Liu, Phys. Lett. B 699, 246 (2011)

    Article  ADS  Google Scholar 

  51. M.I. Forte, M.G. Richarte, arXiv:1206.1073

  52. L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1206.0179

  53. L.P. Chimento, M. Forte, M.G. Richarte, arXiv:1106.0781

  54. L.P. Chimento, M.G. Richarte, arXiv:1207.1121

  55. J.A.S. Lima, J.F. Jesus, R.C. Santos, M.S.S. Gill, arXiv:1205.4688

  56. L.P. Chimento, M.G. Richarte, arXiv:1303.3356

  57. L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1301.2737

  58. L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1106.0781

  59. R.H. Cyburt, B.D. Fields, K.A. Olive, E. Skillman, Astropart. Phys. 23, 313 (2005)

    Article  ADS  Google Scholar 

  60. E.L. Wright, Astrophys. J. 664, 633–639 (2007)

    Article  ADS  Google Scholar 

  61. C.M. Muller, Phys. Rev. D 71, 047302 (2005)

    Article  ADS  Google Scholar 

  62. E. Calabrese, M. Migliaccio, L. Pagano, G. De Troia, A. Melchiorri, P. Natoli, Phys. Rev. D 80, 063539 (2009)

    Article  ADS  Google Scholar 

  63. S. DeDeo, Phys. Rev. D 73, 043520 (2006)

    Article  ADS  Google Scholar 

  64. G. Kremer, Gen. Relativ. Gravit. 39, 965–972 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. D.S. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, London, 2006)

    Google Scholar 

  66. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  67. P.A.R. Ade et al., arXiv:1303.5076v1

  68. G. Hinshaw et al., arXiv:1212.5226v3

  69. A.G. Riess, L. Macri, S. Casertano et al., arXiv:1103.2976

  70. W.L. Freedman, B.F. Madore, B.K. Gibson, arXiv:astro-ph/0012376

  71. Z. Keresztes, L.A. Gergely, A.Y. Kamenshchik, V. Gorini, D. Polarski, arXiv:1304.6355

Download references

Acknowledgements

We are grateful to the referee for his careful reading of the manuscript and for making useful suggestions, which helped to improve the article. L.P.C. thanks the University of Buenos Aires under Project No. 20020100100147 and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Project PIP 114-200801-00328 for the partial support of this work during their different stages. M.G.R. is partially supported by Postdoctoral Fellowship program of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín G. Richarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimento, L.P., Richarte, M.G. Nonbaryonic dark matter and scalar field coupled with a transversal interaction plus decoupled radiation. Eur. Phys. J. C 73, 2497 (2013). https://doi.org/10.1140/epjc/s10052-013-2497-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2497-4

Keywords

Navigation