Central exclusive production as a probe of the gluonic component of the η′ and η mesons

  • The KRYSTHAL Collaboration
  • L. A. Harland-Lang
  • V. A. Khoze
  • M. G. Ryskin
  • W. J. Stirling
Regular Article - Theoretical Physics

Abstract

Currently, the long-standing issue concerning the size of the gluonic content of the η′ and η mesons remains unsettled. With this in mind we consider the central exclusive production (CEP) of η′, η meson pairs in the perturbative regime, applying the Durham pQCD-based model of CEP and the ‘hard exclusive’ formalism to evaluate the meson production subprocess. We calculate for the first time the relevant leading order parton-level processes \(gg \to q\overline{q}gg\) and gggggg, where the final-state gg and \(q\overline{q}\) pairs form a pseudoscalar flavour-singlet state. We observe that these amplitudes display some non-trivial and interesting theoretical properties, and we comment on their origin. Finally, we present a phenomenological study, and show that the cross sections for the CEP of η′, η meson pairs are strongly sensitive to the size of the gluon content of these mesons. The observation of these processes could therefore provide important and novel insight into this problem.

Keywords

Transverse Momentum Distribution Amplitude Helicity Amplitude Transition Form Factor Central Exclusive Production 

Notes

Acknowledgements

We thank Mike Albrow, Erik Brucken, Victor Chernyak, Risto Orava, Kornelija Passek–Kumeric̆ki and Antoni Szczurek for useful discussions. This work was supported by the grant RFBR 11-02-00120-a and by the Federal Program of the Russian State RSGSS-4801.2012.2. WJS is grateful to the IPPP for an Associateship. VAK thanks the Galileo Galilei Institute for Theoretical Physics for hospitality and the INFN for partial support during the completion of this work.

References

  1. 1.
    A.D. Martin, M.G. Ryskin, V.A. Khoze, Acta Phys. Pol. B 40, 1841 (2009). 0903.2980 ADSGoogle Scholar
  2. 2.
    M.G. Albrow, T.D. Coughlin, J.R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010). 1006.1289 ADSCrossRefGoogle Scholar
  3. 3.
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, 1301.2552 (2013)
  4. 4.
    C. Di Donato, G. Ricciardi, I. Bigi, Phys. Rev. D 85, 013016 (2012). 1105.3557 ADSCrossRefGoogle Scholar
  5. 5.
    G. ’t Hooft, Phys. Rev. D 14, 3432 (1976) ADSCrossRefGoogle Scholar
  6. 6.
    R. Crewther, Phys. Lett. B 70, 349 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    G. Veneziano, Nucl. Phys. B 159, 213 (1979) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    P. Di Vecchia, G. Veneziano, Nucl. Phys. B 171, 253 (1980) ADSCrossRefGoogle Scholar
  9. 9.
    S. Weinberg, Phys. Rev. D 11, 3583 (1975) ADSCrossRefGoogle Scholar
  10. 10.
    C.E. Thomas, J. High Energy Phys. 0710, 026 (2007). 0705.1500 ADSCrossRefGoogle Scholar
  11. 11.
    G. Ricciardi, Phys. Rev. D 86, 117505 (2012). 1209.3386 ADSCrossRefGoogle Scholar
  12. 12.
    S. Donskov et al., 1301.6987 (2013)
  13. 13.
    P. Kroll, K. Passek-Kumericki, 1206.4870 (2012)
  14. 14.
    M. Albrow, private communication Google Scholar
  15. 15.
    M. Albrow, talk at ‘Diffraction 2012’ Workshop, Puerto del Carmen, Lanzarote, Spain, Sept. 10–15th, 2012 Google Scholar
  16. 16.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 108, 081801 (2012). 1112.0858 ADSCrossRefGoogle Scholar
  17. 17.
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 71, 1714 (2011). 1105.1626 ADSCrossRefGoogle Scholar
  18. 18.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981) ADSCrossRefGoogle Scholar
  19. 19.
    M. Benayoun, V.L. Chernyak, Nucl. Phys. B 329, 285 (1990) ADSCrossRefGoogle Scholar
  20. 20.
    J. Pumplin, F. Henyey, Nucl. Phys. B 117, 377 (1976) ADSCrossRefGoogle Scholar
  21. 21.
    Y.I. Azimov, V.A. Khoze, E.M. Levin, M.G. Ryskin, Sov. J. Nucl. Phys. 21, 215 (1975) Google Scholar
  22. 22.
    B.R. Desai, B.C. Shen, M. Jacob, Nucl. Phys. B 142, 258 (1978) ADSCrossRefGoogle Scholar
  23. 23.
    P. Lebiedowicz, R. Pasechnik, A. Szczurek, Phys. Lett. B 701, 434 (2011). 1103.5642 ADSCrossRefGoogle Scholar
  24. 24.
    L. Harland-Lang, V. Khoze, M. Ryskin, W. Stirling, Eur. Phys. J. C 71, 1545 (2011). 1011.0680 ADSGoogle Scholar
  25. 25.
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 72, 2110 (2012). 1204.4803 ADSCrossRefGoogle Scholar
  26. 26.
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 69, 179 (2010). 1005.0695 ADSCrossRefGoogle Scholar
  27. 27.
    V.A. Khoze, A.D. Martin, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 35, 211 (2004). hep-ph/0403218 ADSCrossRefGoogle Scholar
  28. 28.
    V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 24, 581 (2002). hep-ph/0203122 CrossRefGoogle Scholar
  29. 29.
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 65, 433 (2010). 0909.4748 ADSCrossRefGoogle Scholar
  30. 30.
    M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 60, 265 (2009). 0812.2413 ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 71, 1617 (2011). 1102.2844 ADSCrossRefGoogle Scholar
  32. 32.
    A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 387 (2003). hep-ph/0307064 ADSCrossRefGoogle Scholar
  33. 33.
    V.L. Chernyak, Phys. Lett. B 640, 246 (2006). hep-ph/0605072 ADSCrossRefGoogle Scholar
  34. 34.
    V.L. Chernyak, 1212.1304 (2012)
  35. 35.
    G. Duplancic, B. Nizic, Phys. Rev. Lett. 97, 142003 (2006). hep-ph/0607069 ADSCrossRefGoogle Scholar
  36. 36.
    G.W. Atkinson, J. Sucher, K. Tsokos, Phys. Lett. B 137, 407 (1984) ADSCrossRefGoogle Scholar
  37. 37.
    A.B. Wakely, C.E. Carlson, Phys. Rev. D 45, 1796 (1992) ADSCrossRefGoogle Scholar
  38. 38.
    V.N. Baier, A.G. Grozin, Z. Phys. C 29, 161 (1985) ADSCrossRefGoogle Scholar
  39. 39.
    P. Kroll, K. Passek-Kumericki, Phys. Rev. D 67, 054017 (2003). hep-ph/0210045 ADSCrossRefGoogle Scholar
  40. 40.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980) ADSCrossRefGoogle Scholar
  41. 41.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80, 052002 (2009). 0905.4778 ADSCrossRefGoogle Scholar
  42. 42.
    V.P. Druzhinin, PoS EPS-HEP2009, 051 (2009). 0909.3148 Google Scholar
  43. 43.
    S. Uehara et al. (Belle Collaboration), 1205.3249 (2012)
  44. 44.
    V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B 201, 492 (1982) ADSCrossRefGoogle Scholar
  45. 45.
    T. Ohrndorf, Nucl. Phys. B 186, 153 (1981) ADSCrossRefGoogle Scholar
  46. 46.
    V.N. Baier, A.G. Grozin, Nucl. Phys. B 192, 476 (1981) ADSCrossRefGoogle Scholar
  47. 47.
    T. Feldmann, P. Kroll, Eur. Phys. J. C 5, 327 (1998). hep-ph/9711231 ADSGoogle Scholar
  48. 48.
    A.V. Kiselev, V.A. Petrov, Z. Phys. C 58, 595 (1993) ADSCrossRefGoogle Scholar
  49. 49.
    H. Leutwyler, Nucl. Phys. Proc. Suppl. 64, 223 (1998). hep-ph/9709408 ADSCrossRefGoogle Scholar
  50. 50.
    T. Feldmann, P. Kroll, B. Stech, Phys. Rev. D 58, 114006 (1998). hep-ph/9802409 ADSCrossRefGoogle Scholar
  51. 51.
    J. Vermaseren, math-ph/0010025 (2000)
  52. 52.
    The SuperCHIC code and documentation are available at http://projects.hepforge.org/superchic/
  53. 53.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). 0901.0002 ADSCrossRefGoogle Scholar
  54. 54.
    T. Feldmann, P. Kroll, Phys. Scr. T 99, 13 (2002). hep-ph/0201044 ADSCrossRefGoogle Scholar
  55. 55.
    R. Escribano, J.-M. Frere, J. High Energy Phys. 0506, 029 (2005). hep-ph/0501072 ADSCrossRefGoogle Scholar
  56. 56.
    D. d’Enterria, private communication Google Scholar
  57. 57.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  58. 58.
    CMS Collaboration, CMS-PAS-FWD-11-004 (2012) Google Scholar
  59. 59.
    H.-W. Ke, X.-H. Yuan, X.-Q. Li, Int. J. Mod. Phys. A 26, 4731 (2011). 1101.3407 ADSMATHCrossRefGoogle Scholar
  60. 60.
    V. Mathieu, V. Vento, Phys. Rev. D 81, 034004 (2010). 0910.0212 ADSCrossRefGoogle Scholar
  61. 61.
    F. Ambrosino et al., J. High Energy Phys. 0907, 105 (2009). 0906.3819 ADSGoogle Scholar
  62. 62.
    R. Escribano, J. Nadal, J. High Energy Phys. 0705, 006 (2007). hep-ph/0703187 ADSCrossRefGoogle Scholar
  63. 63.
    W. Ochs, J. Phys. G 40, 043001 (2013). 1301.5183 ADSCrossRefGoogle Scholar
  64. 64.
    M.L. Mangano, S.J. Parke, Phys. Rep. 200, 301 (1991). hep-th/0509223 ADSCrossRefGoogle Scholar
  65. 65.
    S.J. Parke, T.R. Taylor, Phys. Rev. Lett. 56, 2459 (1986) ADSCrossRefGoogle Scholar
  66. 66.
    F.A. Berends, W.T. Giele, Nucl. Phys. B 306, 759 (1988) ADSCrossRefGoogle Scholar
  67. 67.
    G. Georgiou, V.V. Khoze, J. High Energy Phys. 0405, 070 (2004). hep-th/0404072 MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    J.-B. Wu, C.-J. Zhu, J. High Energy Phys. 0409, 063 (2004). hep-th/0406146 MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    T.G. Birthwright, E.W.N. Glover, V.V. Khoze, P. Marquard, J. High Energy Phys. 0507, 068 (2005). hep-ph/0505219 MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • The KRYSTHAL Collaboration
  • L. A. Harland-Lang
    • 1
  • V. A. Khoze
    • 1
    • 2
  • M. G. Ryskin
    • 2
  • W. J. Stirling
    • 3
  1. 1.Department of Physics and Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamUK
  2. 2.Petersburg Nuclear Physics InstituteNRC Kurchatov InstituteSt. PetersburgRussia
  3. 3.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations