Advertisement

Vacuum local and global electromagnetic self-energies for a point-like and an extended field source

  • Roberto Passante
  • Lucia Rizzuto
  • Salvatore Spagnolo
Regular Article - Theoretical Physics

Abstract

We consider the electric and magnetic energy densities (or equivalently field fluctuations) in the space around a point-like field source in its ground state, after having subtracted the spatially uniform zero-point energy terms, and discuss the problem of their singular behavior at the source’s position. We show that the assumption of a point-like source leads, for a simple Hamiltonian model of the interaction of the source with the electromagnetic radiation field, to a divergence of the renormalized electric and magnetic energy density at the position of the source. We analyze in detail the mathematical structure of such a singularity in terms of a delta function and its derivatives. We also show that an appropriate consideration of these singular terms solves an apparent inconsistency between the total field energy and the space integral of its density. Thus the finite field energy stored in these singular terms gives an important contribution to the self-energy of the source. We then consider the case of an extended source, smeared out over a finite volume and described by an appropriate form factor. We show that in this case all divergences in local quantities such as the electric and the magnetic energy density, as well as any inconsistency between global and space-integrated local self-energies, disappear.

Keywords

Energy Density Polarizable Body Singular Term Field Energy Singular Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank F. Persico, R. Messina and N. Bartolo for interesting discussions on the subject of this paper. Financial support by the Julian Schwinger Foundation, by Ministero dell’Istruzione, dell’Università e della Ricerca and by Comitato Regionale di Ricerche Nucleari e di Struttura della Materia is gratefully acknowledged. The authors acknowledge support from the ESF Research Networking Program CASIMIR.

References

  1. 1.
    P.W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic Press, San Diego, 1994) Google Scholar
  2. 2.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948) MATHGoogle Scholar
  3. 3.
    H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948) ADSMATHCrossRefGoogle Scholar
  4. 4.
    E.M. Lifshits, Sov. Phys. JETP 2, 73 (1956) Google Scholar
  5. 5.
    R. Messina, R. Passante, L. Rizzuto, S. Spagnolo, R. Vasile, J. Phys. A 41, 164031 (2008) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford Science Publication, Oxford, 2009), and references therein MATHCrossRefGoogle Scholar
  7. 7.
    C.I. Sukenik, M.G. Boshier, D. Cho, V. Sandoghdar, E.A. Hinds, Phys. Rev. Lett. 70, 560 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    L.A. Manzoni, W.F. Wreszinski, Eur. Phys. J. C 25, 315 (2002) ADSMATHCrossRefGoogle Scholar
  11. 11.
    O. Kenneth, I. Klich, Phys. Rev. Lett. 97, 160401 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    O. Kenneth, I. Klich, Phys. Rev. B 78, 014103 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    P.A. Maia Neto, A. Lambrecht, S. Reynaud, Phys. Rev. A 78, 012115 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Phys. Rev. Lett. 99, 170403 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Rahi, T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Phys. Rev. D 80, 085021 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    M.F. Maghrebi, S.J. Rahi, T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Proc. Natl. Acad. Sci. USA 108, 6867 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    D. Deutsch, P. Candelas, Phys. Rev. D 20, 3063 (1979) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    K.A. Milton, I. Cavero-Pelaez, J. Wagner, J. Phys. A 39, 6543 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    L.H. Ford, N.F. Svaiter, Phys. Rev. D 58, 065007 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Pfenning, Phys. Rev. D 62, 045018 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    K.A. Milton, in Casimir Physics, ed. by D. Dalvit, P. Milonni, D. Roberts, F. de Rosa (Springer, Heidelberg, 2011), p. 39, and references therein CrossRefGoogle Scholar
  22. 22.
    N. Bartolo, R. Passante, Phys. Rev. A 86, 012122 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    V. Sopova, L.H. Ford, Phys. Rev. D 66, 045026 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    M. Bordag, K. Kirsten, Int. J. Mod. Phys. A 17, 813 (2002) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    A.D. Helfer, A.S.I. Lang, J. Phys. A 32, 1937 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    K.A. Milton, Phys. Rev. D 84, 065028 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, O. Schröder, H. Weigel, Nucl. Phys. B 677, 379 (2004) ADSMATHCrossRefGoogle Scholar
  28. 28.
    M. Bordag, N. Khusnutdinov, Phys. Rev. D 77, 085026 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    F.D. Mazzitelli, J.P. Nery, A. Satz, Phys. Rev. D 84, 125008 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    R. Estrada, S.A. Fulling, F.D. Mera, J. Phys. A 45, 455402 (2012) MathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Estrada, S.A. Fulling, L. Kaplan, K. Kirsten, Z. Liu, K.A. Milton, J. Phys. A 41, 164055 (2008) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R. Passante, E.A. Power, Phys. Rev. A 35, 188 (1987) ADSCrossRefGoogle Scholar
  33. 33.
    G. Compagno, G.M. Palma, R. Passante, F. Persico, J. Phys. B 28, 1105 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    I. Cavero-Peláez, K.M. Milton, J. Wagner, Phys. Rev. D 73, 085004 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    I. Cavero-Peláez, K.M. Milton, K. Kirsten, J. Phys. A 40, 3607 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    D.P. Craig, E.A. Power, Int. J. Quant. Chem. 3, 903 (1969) ADSCrossRefGoogle Scholar
  37. 37.
    G. Compagno, R. Passante, F. Persico, Phys. Scr. T 21, 33 (1988) ADSCrossRefGoogle Scholar
  38. 38.
    G. Compagno, R. Passante, F. Persico, Phys. Rev. A 38, 600 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    E.M. Henley, W. Thirring, Elementary Quantum Field Theory (McGraw-Hill, New York, 1962) MATHGoogle Scholar
  40. 40.
    H.E. Moses, Phys. Rev. A 8, 1710 (1973) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    R. Passante, E.A. Power, T. Thirunamachandran, Phys. Lett. A 249, 77 (1998) ADSCrossRefGoogle Scholar
  42. 42.
    R. Passante, E.A. Power, Phys. Lett. A 122, 14 (1987) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Roberto Passante
    • 1
  • Lucia Rizzuto
    • 1
  • Salvatore Spagnolo
    • 1
  1. 1.Dipartimento di Fisica e ChimicaUniversità degli Studi di Palermo and CNISMPalermoItaly

Personalised recommendations