Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment

  • Zhe Chang
  • Sai Wang
Regular Article - Theoretical Physics


The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than 10−14. In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME).


Minkowski Spacetime Effective Field Theory Lorentz Symmetry Finsler Geometry Lorentz Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank useful discussions with Yunguo Jiang, Danning Li, Ming-Hua Li, Xin Li and Hai-Nan Lin. This work is supported by the National Natural Science Fund of China under Grant No. 11075166.


  1. 1.
    V.A. Kostelecky, N. Russell, Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11 (2011) CrossRefADSGoogle Scholar
  2. 2.
    A.A. Michelson, E.W. Morley, The relative motion of the Earth and the luminiferous aether. Am. J. Sci. 34, 333 (1887) Google Scholar
  3. 3.
    M.F. Ahmeda, B.M. Quinea, S. Sargoytchev, A.D. Stauffer, A review of one-way and two-way experiments to test the isotropy of the speed of light. Indian J. Phys. 86, 835 (2012) CrossRefADSGoogle Scholar
  4. 4.
    V.G. Gurzadyan et al., Probe the light speed anisotropy with respect to the cosmic microwave background radiation dipole. Mod. Phys. Lett. A 20, 19 (2005) CrossRefADSGoogle Scholar
  5. 5.
    V.G. Gurzadyan et al., Lowering the light speed isotropy limit: European synchrotron radiation facility measurements. Nuovo Cimento B 122, 515 (2007) ADSGoogle Scholar
  6. 6.
    V.G. Gurzadyan et al., A new limit on the light speed isotropy from the GRAAL experiment at the ESRF. arXiv:1004.2867
  7. 7.
    J.-P. Bocquet et al., Limits on light-speed anisotropies from Compton scattering of high-energy electrons. Phys. Rev. Lett. 104, 241601 (2010) CrossRefADSGoogle Scholar
  8. 8.
    V.A. Kostelecky, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989) CrossRefADSGoogle Scholar
  9. 9.
    D. Colladay, V.A. Kostelecky, CPT violation and the standard model. Phys. Rev. D 55, 6760 (1997) CrossRefADSGoogle Scholar
  10. 10.
    D. Colladay, V.A. Kostelecky, Lorentz-violating extension of the standard model. Phys. Rev. D 58, 116002 (1998) CrossRefADSGoogle Scholar
  11. 11.
    G.Yu. Bogoslovsky, Lorentz symmetry violation without violation of relativistic symmetry. Phys. Lett. A 350, 5 (2006) MATHCrossRefADSGoogle Scholar
  12. 12.
    G.Yu. Bogoslovsky, Subgroups of the group of generalized Lorentz transformations and their geometric invariants. SIGMA 1, 017 (2005) MathSciNetGoogle Scholar
  13. 13.
    V.A. Kostelecky, Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 701, 137 (2011) MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Z. Chang, S. Wang, Standard model with Lorentz and CPT violations in Finsler spacetime. arXiv:1209.3574
  15. 15.
    G.Yu. Bogoslovsky, A special-relativistic theory of the locally anisotropic space-time. I: the metric and group of motions of the anisotropic space of events. Nuovo Cimento B 40, 99 (1977) CrossRefADSGoogle Scholar
  16. 16.
    G.Yu. Bogoslovsky, A special-relativistic theory of the locally anisotropic space-time. II: Mechanics and electrodynamics in the anisotropic space. Nuovo Cimento B 40, 116 (1977) CrossRefADSGoogle Scholar
  17. 17.
    G.Yu. Bogoslovsky, A special-relativistic theory of the locally anisotropic space-time, Appendix. Nuovo Cimento B 43, 377 (1978) CrossRefADSGoogle Scholar
  18. 18.
    A.G. Cohen, S.L. Glashow, Very special relativity. Phys. Rev. Lett. 97, 021601 (2006) MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    G.W. Gibbons, J. Gomis, C.N. Pope, General very special relativity is Finsler geometry. Phys. Rev. D 76, 081701 (2007) MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    V. Balan, G.Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, Geometrical models of the locally anisotropic space-time. J. Mod. Phys. 3, 1314 (2012) CrossRefGoogle Scholar
  21. 21.
    H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959) MATHCrossRefGoogle Scholar
  22. 22.
    D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry (Springer, Berlin, 2000) MATHCrossRefGoogle Scholar
  23. 23.
    Z. Shen, Lectures on Finsler Geometry (World Scientific, Singapore, 2001) MATHCrossRefGoogle Scholar
  24. 24.
    H.C. Wang, On Finsler spaces with completely integrable equations of Killing. J. Lond. Math. Soc. 22, 5 (1947) MATHCrossRefGoogle Scholar
  25. 25.
    X. Li, Z. Chang, Symmetry and special relativity in Finsler spacetime with constant curvature. Differ. Geom. Appl. 30, 737 (2012) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Z. Chang, S. Wang, Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur. Phys. J. C 72, 2165 (2012) CrossRefADSGoogle Scholar
  27. 27.
    L.L. Zhou, B.-Q. Ma, A theoretical diagnosis on light speed anisotropy from GRAAL experiment. Astropart. Phys. 36, 37 (2012) CrossRefADSGoogle Scholar
  28. 28.
    V.A. Kostelecky, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002) CrossRefADSGoogle Scholar
  29. 29.
    Z. Chang, X. Li, S. Wang, Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity. Phys. Lett. B 710, 430 (2012) CrossRefADSGoogle Scholar
  30. 30.
    Z. Chang, X. Li, S. Wang, Symmetry, causal structure and superluminality in Finsler spacetime. arXiv:1201.1368
  31. 31.
    D.C. Champeney, G.R. Isaak, A.M. Khan, An “Ether drift” experiment based on the Mossbauer effect. Phys. Lett. 7, 241 (1963) CrossRefADSGoogle Scholar
  32. 32.
    G.R. Isaak, Mossbauer effect: application to relativity. Phys. Bull. 21, 255 (1970) Google Scholar
  33. 33.
    M. Chaichian, A.D. Dolgov, V.A. Novikov, A. Tureanu, CPT violation does not lead to violation of Lorentz invariance and vice versa. Phys. Lett. B 699, 177 (2012) ADSGoogle Scholar
  34. 34.
    M. Chaichian, K. Fujikawa, A. Tureanu, Lorentz invariant CPT violation: particle and antiparticle mass splitting. Phys. Lett. B 712, 115 (2012) CrossRefADSGoogle Scholar
  35. 35.
    M. Chaichian, K. Fujikawa, A. Tureanu, Electromagnetic interaction in theory with Lorentz invariant CPT violation. Phys. Lett. B 718, 1500 (2013) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina

Personalised recommendations