On finite size corrections to the dispersion relations of giant magnon and single spike on γ-deformed T 1,1

Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

In this paper we consider the finite size effects for the strings in β-deformed AdS 5×T 1,1 background. We analyze the finite size corrections for the cases of giant magnon and single spike string solution. The finite size corrections for the undeformed case are straightforwardly obtained sending the deformation parameter to zero.

Keywords

Gauge Theory Dispersion Relation String Solution Finite Size Effect Single Spike 

References

  1. 1.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998) MathSciNetADSMATHGoogle Scholar
  2. 2.
    I.R. Klebanov, E. Witten, Superconformal field theory on threebranes at a Calabi–Yau singularity. Nucl. Phys. B 536, 199–218 (1998) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    G. Arutyunov, S. Frolov, M. Zamaklar, Finite-size effects from giant magnons. Nucl. Phys. B 778, 1–35 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    D.M. Hofman, J.M. Maldacena, Giant magnons. J. Phys. A 39, 13095–13118 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    S. Benvenuti, E. Tonni, Giant magnons and spiky strings on the conifold. J. High Energy Phys. 02, 041 (2009) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    R.G. Leigh, M.J. Strassler, Exactly marginal operators and duality in four-dimensional N=1 supersymmetric gauge theory. Nucl. Phys. B 447, 95–136 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    O. Lunin, J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry and their gravity duals. J. High Energy Phys. 0505, 033 (2005) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Frolov, Lax pair for strings in Lunin–Maldacena background. J. High Energy Phys. 0505, 069 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    H. Dimov, M. Michalcik, R.C. Rashkov, Strings on the deformed T 1,1: giant magnon and single spike solutions. J. High Energy Phys. 10, 019 (2009) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S. Benvenuti, A. Hanany, Conformal manifolds for the conifold and other toric field theories. J. High Energy Phys. 0508, 024 (2005) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Catal-Ozer, Lunin–Maldacena deformations with three parameters. J. High Energy Phys. 0602, 026 (2006) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Ambjorn, R.A. Janik, C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality. Nucl. Phys. B 736, 288–301 (2006) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    R.A. Janik, T. Lukowski, Wrapping interactions at strong coupling: the giant magnon. Phys. Rev. D 76, 126008 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    I.S. Gradshteyn, I.M. Ryshik, Table of Integrals, Series, and Products (1994) MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria
  2. 2.Department of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations