Skip to main content
Log in

Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the ℤ4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  3. E. Accomando et al., Workshop on CP studies and non-standard Higgs physics. arXiv:hep-ph/0608079

  4. T.D. Lee, Phys. Rev. D 8, 1226 (1973)

    Article  ADS  Google Scholar 

  5. G.C. Branco et al., Phys. Rep. 516, 1 (2012)

    Article  ADS  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 37, 657 (1976)

    Article  ADS  Google Scholar 

  7. R. Erdem, Phys. Lett. B 355, 222 (1995)

    Article  ADS  Google Scholar 

  8. S.L. Adler, Phys. Rev. D 59, 015012 (1999). Erratum-ibid. D, 59, 099902 (1999)

    Article  ADS  Google Scholar 

  9. A. Barroso, P.M. Ferreira, R. Santos, J.P. Silva, Phys. Rev. D 74, 085016 (2006)

    Article  ADS  Google Scholar 

  10. T. Fukuyama, H. Sugiyama, K. Tsumura, Phys. Rev. D 82, 036004 (2010)

    Article  ADS  Google Scholar 

  11. E. Ma, G. Rajasekaran, Phys. Rev. D 64, 113012 (2001)

    Article  ADS  Google Scholar 

  12. L. Lavoura, H. Kuhbock, Eur. Phys. J. C 55, 303 (2008)

    Article  ADS  Google Scholar 

  13. S. Morisi, E. Peinado, Phys. Rev. D 80, 113011 (2009)

    Article  ADS  Google Scholar 

  14. A.C.B. Machado, J.C. Montero, V. Pleitez, Phys. Lett. B 697, 318 (2011)

    Article  ADS  Google Scholar 

  15. R. de Adelhart Toorop, F. Bazzocchi, L. Merlo, A. Paris, J. High Energy Phys. 1103, 035 (2011)

    Article  Google Scholar 

  16. G.C. Branco, J.M. Gerard, W. Grimus, Phys. Lett. B 136, 383 (1984)

    Article  ADS  Google Scholar 

  17. I. de Medeiros Varzielas, D. Emmanuel-Costa, Phys. Rev. D 84, 117901 (2011)

    Article  ADS  Google Scholar 

  18. C.C. Nishi, Phys. Rev. D 76, 055013 (2007)

    Article  ADS  Google Scholar 

  19. P.M. Ferreira, J.P. Silva, Phys. Rev. D 78, 116007 (2008)

    Article  ADS  Google Scholar 

  20. I.P. Ivanov, C.C. Nishi, Phys. Rev. D 82, 015014 (2010)

    Article  ADS  Google Scholar 

  21. I.P. Ivanov, J. High Energy Phys. 1007, 020 (2010)

    Article  ADS  Google Scholar 

  22. M. Maniatis, A. von Manteuffel, O. Nachtmann, Eur. Phys. J. C 57, 739 (2008)

    Article  ADS  Google Scholar 

  23. M. Maniatis, O. Nachtmann, J. High Energy Phys. 0905, 028 (2009)

    Article  ADS  Google Scholar 

  24. P.M. Ferreira, J.P. Silva, Eur. Phys. J. C 69, 45 (2010)

    Article  ADS  Google Scholar 

  25. I.P. Ivanov, Acta Phys. Pol. B 40, 2789 (2009)

    ADS  Google Scholar 

  26. I.F. Ginzburg, I.P. Ivanov, K.A. Kanishev, Phys. Rev. D 81, 085031 (2010)

    Article  ADS  Google Scholar 

  27. I.F. Ginzburg, K.A. Kanishev, M. Krawczyk, D. Sokolowska, Phys. Rev. D 82, 123533 (2010)

    Article  ADS  Google Scholar 

  28. N.G. Deshpande, E. Ma, Phys. Rev. D 18, 2574 (1978)

    Article  ADS  Google Scholar 

  29. R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74, 015007 (2006)

    Article  ADS  Google Scholar 

  30. L. Lopez Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0702, 028 (2007)

    Article  ADS  Google Scholar 

  31. H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010)

    Article  ADS  MATH  Google Scholar 

  32. C.C. Nishi, Phys. Rev. D 74, 036003 (2006). Erratum-ibid. D 76, 119901 (2007)

    Article  ADS  Google Scholar 

  33. P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann, J.P. Silva, Int. J. Mod. Phys. A 26, 769–808 (2011)

    Article  ADS  MATH  Google Scholar 

  34. I.P. Ivanov, Phys. Lett. B 632, 360 (2006)

    Article  ADS  Google Scholar 

  35. I.P. Ivanov, Phys. Rev. D 75, 035001 (2007). Erratum-ibid. D 76, 039902 (2007)

    Article  ADS  Google Scholar 

  36. I.P. Ivanov, Phys. Rev. D 77, 015017 (2008)

    Article  ADS  Google Scholar 

  37. I.P. Ivanov, V. Keus, E. Vdovin, J. Phys. A 45, 215201 (2012). arXiv:1112.1660 [math-ph]

    MathSciNet  ADS  Google Scholar 

  38. I.P. Ivanov, E. Vdovin, Phys. Rev. D 86, 095030 (2012)

    Article  ADS  Google Scholar 

  39. L. Lavoura, J.P. Silva, Phys. Rev. D 50, 4619 (1994)

    Article  ADS  Google Scholar 

  40. F.J. Botella, J.P. Silva, Phys. Rev. D 51, 3870 (1995)

    Article  ADS  Google Scholar 

  41. G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (Oxford University Press, Oxford, 1999)

    Google Scholar 

  42. G. Ecker, W. Grimus, W. Konetschny, Nucl. Phys. B 191, 465 (1981)

    Article  ADS  Google Scholar 

  43. G. Ecker, W. Grimus, H. Neufeld, Nucl. Phys. B 247, 70 (1984)

    Article  ADS  Google Scholar 

  44. G. Ecker, W. Grimus, H. Neufeld, J. Phys. A 20, L807 (1987)

    Article  ADS  Google Scholar 

  45. H. Neufeld, W. Grimus, G. Ecker, Int. J. Mod. Phys. A 3, 603 (1988)

    Article  ADS  Google Scholar 

  46. P.M. Ferreira, H.E. Haber, J.P. Silva, Phys. Rev. D 79, 116004 (2009)

    Article  ADS  Google Scholar 

  47. S. Davidson, H.E. Haber, Phys. Rev. D 72, 035004 (2005). Erratum-ibid. D 72, 099902 (2005)

    Article  ADS  Google Scholar 

  48. H.E. Haber, D. O’Neil, Phys. Rev. D 74, 015018 (2006). Erratum-ibid. D 74, 059905 (2006)

    Article  ADS  Google Scholar 

  49. I. Isaacs, Finite Group Theory (Am. Math. Soc., Providence, 2008)

    MATH  Google Scholar 

  50. G. Sartori, G. Valente, arXiv:hep-ph/0304026

  51. F. Nagel, New aspects of gauge-boson couplings and the Higgs sector. Ph.D. thesis, University Heidelberg (2004). http://www.ub.uni-heidelberg.de/archiv/4803

  52. M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, Eur. Phys. J. C 48, 805 (2006)

    Article  ADS  Google Scholar 

  53. W.M. Fairbairn, T. Fulton, W.H. Klink, J. Math. Phys. 5, 1038 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  54. I.P. Ivanov, V. Keus, Phys. Lett. B 695, 459 (2011)

    Article  ADS  Google Scholar 

  55. R.A. Battye, G.D. Brawn, A. Pilaftsis, J. High Energy Phys. 1108, 020 (2011)

    Article  ADS  Google Scholar 

  56. A. Pilaftsis, Phys. Lett. B 706, 465 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belgian Fund F.R.S.-FNRS, and in part by grants RFBR 11-02-00242-a, RFBR 12-01-33102, RF President grant for scientific schools NSc-3802.2012.2, and the Program of Department of Physics SC RAS and SB RAS “Studies of Higgs boson and exotic particles at LHC.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor P. Ivanov.

Appendix: 3HDM potentials with non-abelian Higgs-family symmetry group

Appendix: 3HDM potentials with non-abelian Higgs-family symmetry group

Here, for the reader’s convenience, we list once again Higgs potentials with a given symmetry group. We focus here on cases with non-abelian groups from the list (84) because abelian ones were already discussed in detail in [37]. In each case we start from the most general potential compatible with the given realizable group presented in the main text and use the residual reparametrization freedom to simplify the coefficients of the potential (usually, it amounts to rephasing of doublets which makes some of the coefficients real). For each group G, the potential written below faithfully represents all possible Higgs potentials with realizable symmetry group G. In this sense, the symmetry group uniquely defines the phenomenology of the scalar sector of 3HDM, the only exception being D 6 with its two distinct realizations.

Group \(D_{6} \simeq\mathbb{Z}_{3} \rtimes\mathbb{Z}_{2}^{*}\)

Consider the most general phase-independent part of the Higgs potential

and the additional terms

(A.1)

For generic λ i , these terms are symmetric only under the group ℤ3 generated by

$$ a_3 = \left ( \begin{array}{c@{\quad}c@{\quad}c} \omega& 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1 \end{array} \right ),\quad \omega= \exp \biggl({2\pi i \over3} \biggr). $$
(A.2)

If it happens that the product λ 1 λ 2 λ 3 is purely real, then by rephasing of doublets one can make all coefficients in (A.1) real. The resulting potential, \(V_{0} + V_{\mathbb{Z}_{3}}\), is symmetric under \(D_{6} \simeq\mathbb{Z}_{3} \rtimes\mathbb{Z}_{2}^{*}\) generated by a 3 and the CP-transformation.

Group \(D_{8} \simeq\mathbb{Z}_{4} \rtimes\mathbb {Z}_{2}^{*}\)

Consider now terms

$$ V_{\mathbb{Z}_4} = \lambda_1 \bigl(\phi_3^\dagger \phi_1\bigr) \bigl(\phi_3^\dagger \phi_2\bigr) + \lambda_2 \bigl(\phi_1^\dagger \phi_2\bigr)^2 + h.c., $$
(A.3)

which are symmetric under the group ℤ4 generated by

$$ a_4 = \left ( \begin{array}{c@{\quad}c@{\quad}c} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 1 \end{array} \right ). $$
(A.4)

It is always possible to compensate the phases of λ 1 and λ 2 by an appropriate rephasing of the doublets. Therefore, the potential \(V_{0} + V_{\mathbb{Z}_{4}}\) is symmetric under the group \(D_{8} \simeq\mathbb{Z}_{4} \rtimes\mathbb{Z}_{2}^{*}\) generated by a 4 and the CP-transformation.

Group D 6 of unitary transformations

Let us restrict the coefficients of V 0 in the way that guarantees the symmetry under ϕ 1ϕ 2. Then, V 0 turns into

(A.5)

where all coefficients are real and generic. Imposing the same requirement on \(V_{\mathbb{Z}_{3}}\) and performing rephasing, we obtain

(A.6)

where λ 1 is real and \(\sin\psi_{3} \not= 0\). The resulting potential, \(V_{1} + V_{D_{6}}\), is symmetric under D 6 generated by a 3 and

$$ b = \left ( \begin{array}{c@{\quad}c@{\quad}c} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right ). $$
(A.7)

There are no other Higgs-family or generalized-CP transformations which leave this potential invariant. Any explicitly CP-violating D 6-symmetric 3HDM potential can always be brought into this form.

Group \(D_{6} \times\mathbb{Z}_{2}^{*}\)

If in the previous case we set sinψ 3=0 in (A.6), then the potential becomes symmetric under \(D_{6} \times\mathbb{Z}_{2}^{*}\) generated by a 3, b, and the generalized CP-transformation bCP.

Group \(D_{8} \times\mathbb{Z}_{2}^{*}\)

The potential \(V_{1} + V_{\mathbb{Z}_{4}}\) is symmetric under the group \(D_{8} \times\mathbb{Z}_{2}^{*}\) generated by a 4, b, and bCP.

Group \(A_{4} \rtimes\mathbb{Z}_{2}^{*}\)

A potential symmetric under \(A_{4} \rtimes\mathbb{Z}_{2}^{*}\) can be brought into the following form:

(A.8)

with complex \(\tilde{\lambda}\). Its symmetry group is generated by independent sign flips of the individual doublets, by cyclic permutations of ϕ 1, ϕ 2, ϕ 3, and by the exchange of any pair of doublet together with the CP-transformation. An alternative form of this potential is

(A.9)

Group \(S_{4} \times\mathbb{Z}_{2}^{*}\)

If the parameter \(\tilde{\lambda}\) in (A.8) is real or, equivalently, λ ReIm=0 in (A.9), the potential becomes symmetric under \(S_{4} \times\mathbb{Z}_{2}^{*}\) generated by sign flips, all permutation of the three doublets, and the CP-transformation.

Group (ℤ3×ℤ3)⋊ℤ2Δ(54)/ℤ3

Consider the following potential:

(A.10)

with generic real m 2, λ 0, λ 1, λ 2 and complex λ 3. The symmetry group of this potential is (ℤ3×ℤ3)⋊ℤ2=Δ(54)/ℤ3. Here, Δ(54) is generated by the same a 3 and b as before and, in addition, by the cyclic permutation

$$ c = \left ( \begin{array}{c@{\quad}c@{\quad}c} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right ), $$
(A.11)

while the subgroup ℤ3 is the center of SU(3).

Group \((\mathbb{Z}_{3}\times\mathbb{Z}_{3})\rtimes (\mathbb{Z}_{2}\times\mathbb{Z}_{2}^{*})\)

The potential (A.10) becomes symmetric under a generalized-CP transformation if λ 3=kπ/3 with any integer k. In this case, one can make λ 3 real by a rephasing transformation. The extra generator then is the CP-transformation.

Group \(\varSigma(36)\rtimes\mathbb{Z}_{2}^{*}\)

The same potential (A.10) becomes symmetric under the group \(\varSigma(36)\rtimes\mathbb{Z}_{2}^{*}\) if, upon rephasing, λ 3=(3λ 1λ 2)/2. The potential can then be rewritten as

(A.12)

Here I 0 and I 1 are the SU(3)-invariants

(A.13)

It is remarkable that this potential has only one “structural” free parameter, and the term containing it reduces the full SU(3) symmetry group to a finite subgroup Σ(36).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, I.P., Vdovin, E. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model. Eur. Phys. J. C 73, 2309 (2013). https://doi.org/10.1140/epjc/s10052-013-2309-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2309-x

Keywords

Navigation