A cosmological dust model with extended f(χ) gravity

  • D. A. Carranza
  • S. Mendoza
  • L. A. Torres
Regular Article - Theoretical Physics


Introducing a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner. At the non-relativistic level a MOND-like theory with a modification in the force sector is obtained, which is the limit of a very general metric relativistic theory of gravity. Since the mass and length scales involved in the dynamics of the whole universe require small accelerations of the order of Milgrom’s acceleration constant a 0, it turns out that the relativistic theory of gravity can be used to explain the expansion of the universe. In this work it is explained how to use that relativistic theory of gravity in such a way that the overall large-scale dynamics of the universe can be treated in a pure metric approach without the need to introduce dark matter and/or dark energy components.


Dark Energy Momentum Tensor Energy Momentum Tensor Present Epoch Null Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by two DGAPA-UNAM grants (PAPIIT IN116210-3 and IN111513-3). DAC, SM and LAT thank support granted by CONACyT: 48014, 26344 and 221045.


  1. 1.
    J.D. Bekenstein, Phys. Rev. D 70, 083509 (2004). arXiv:astro-ph/0403694 ADSCrossRefGoogle Scholar
  2. 2.
    T. Bernal, S. Capozziello, G. Cristofano, M. de Laurentis, Mod. Phys. Lett. A 26, 2677 (2011). arXiv:1110.2580 [gr-qc] ADSCrossRefGoogle Scholar
  3. 3.
    T. Bernal, S. Capozziello, J.C. Hidalgo, S. Mendoza, Eur. Phys. J. C 71, 1794 (2011). arXiv:1108.5588 [astro-ph.CO] ADSCrossRefGoogle Scholar
  4. 4.
    L. Blanchet, S. Marsat, arXiv:1205.0400 [gr-qc] (2012)
  5. 5.
    S. Capozziello, M. de Laurentis, V. Faraoni, Open Astron. J. 3, 49 (2010). arXiv:0909.4672 [gr-qc] ADSCrossRefGoogle Scholar
  6. 6.
    S. Capozziello, L.Z. Fang, Int. J. Mod. Phys. D 11, 483 (2002). arXiv:gr-qc/0201033 ADSMATHCrossRefGoogle Scholar
  7. 7.
    S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics. Fundamental Theories of Physics (Springer, Berlin, 2010) Google Scholar
  8. 8.
    M. Dalarsson, N. Dalarsson, Tensor Calculus, Relativity, and Cosmology: A First Course (Elsevier, Amsterdam, 2005) Google Scholar
  9. 9.
    B. Famaey, S. McGaugh, arXiv:1112.3960 [astro-ph.CO] (2011)
  10. 10.
    T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011). arXiv:1104.2669 [gr-qc] ADSCrossRefGoogle Scholar
  11. 11.
    X. Hernandez, M.A. Jiménez, C. Allen, Eur. Phys. J. C 72, 1884 (2012). arXiv:1105.1873 [astro-ph.GA] ADSCrossRefGoogle Scholar
  12. 12.
    X. Hernandez, S. Mendoza, T. Suarez, T. Bernal, Astron. Astrophys. 514, A101 (2010). arXiv:0904.1434 ADSCrossRefGoogle Scholar
  13. 13.
    L. Landau, E. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics (Butterworth Heinemann, Stoneham, 1975) Google Scholar
  14. 14.
    M. Longair, J. Phys. Conf. Ser. 314, 012011 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Longair, Galaxy Formation (Springer, Berlin, 2008). ISBN 978-3-540-73477-2 Google Scholar
  16. 16.
    S. Mendoza, X. Hernandez, J.C. Hidalgo, T. Bernal, Mon. Not. R. Astron. Soc. 411, 226 (2011). arXiv:1006.5037 [astro-ph.GA] ADSCrossRefGoogle Scholar
  17. 17.
    S. Mendoza, Y.M. Rosas-Guevara, Astron. Astrophys. 472, 367 (2007). arXiv:astro-ph/0610390 ADSMATHCrossRefGoogle Scholar
  18. 18.
    P. Mishra, T.P. Singh, arXiv:1206.3322 [astro-ph.GA] (2012)
  19. 19.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973) Google Scholar
  20. 20.
    A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, A.V. Filippenko, S. Jha, W. Li, R. Chornock, R.P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C.C. Steidel, T. Benítez, Z. Tsvetanov, Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512 ADSCrossRefGoogle Scholar
  21. 21.
    Y. Sobouti, Astron. Astrophys. 464, 921 (2007). arXiv:astro-ph/0603302 ADSMATHCrossRefGoogle Scholar
  22. 22.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Instituto de AstronomíaUniversidad Nacional Autónoma de MéxicoDistrito FederalMexico

Personalised recommendations