Advertisement

Double-bounce domain wall in Einstein–Yang–Mills-Scalar black holes

  • S. Habib Mazharimousavi
  • M. Halilsoy
  • T. Tahamtan
Regular Article - Theoretical Physics

Abstract

We find Einstein–Yang–Mills (EYM) black hole solutions endowed with massless scalar hair in the presence of a potential V(ϕ) as function of the scalar field ϕ. Choosing V(ϕ)=constant (or zero) sets the scalar field to vanish leaving us with the EYM black holes. Our class of black hole solutions is new so that they do not asymptotically go in general to any known limits. A particular case is given, however, which admits an asymptotically anti-de Sitter limit in 6-dimensional spacetime. The role of the potential V(ϕ) in making double bounces (i.e. both a minimum and maximum radii) on a domain wall universe is highlighted.

Keywords

Black Hole Domain Wall Scalar Field Black Hole Solution Hairy Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Cadoni, M. Serra, S. Mignemi, Phys. Rev. D 84, 084046 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    M. Cadoni, M. Serra, S. Mignemi, Phys. Rev. D 85, 086001 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 76, 087501 (2007) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 665, 125 (2008) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G. Darmois, Mémorial des Sciences Mathématiques, vol. XXV (Gauthier-Villars, Paris, 1927), Chap. V Google Scholar
  6. 6.
    W. Israel, Nuovo Cimento B 44, 1 (1966) ADSCrossRefGoogle Scholar
  7. 7.
    W. Israel, Nuovo Cimento B 48, 463(E) (1967) ADSCrossRefGoogle Scholar
  8. 8.
    P. Musgrave, K. Lake, Class. Quantum Gravity 13, 1885 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    S.H. Mazharimousavi, M. Halilsoy, Class. Quantum Gravity 29, 065013 (2012) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 82, 087502 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Gen. Relativ. Gravit. 42, 261 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    H.A. Chamblin, H.S. Reall, Nucl. Phys. B 562, 133 (1999) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • S. Habib Mazharimousavi
    • 1
  • M. Halilsoy
    • 1
  • T. Tahamtan
    • 1
  1. 1.Physics DepartmentEastern Mediterranean UniversityG. Magusa north CyprusTurkey

Personalised recommendations