Advertisement

A laboratory scale fundamental time?

Regular Article - Theoretical Physics

Abstract

The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the “stability of physical theories principle” seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ħ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincaré–Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered.

Keywords

Electron Spin Resonance Deformation Parameter Gauge Field Star Product Heisenberg Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.S. Snyder, Phys. Rev. 71, 38–41 (1947) ADSMATHCrossRefGoogle Scholar
  2. 2.
    H.S. Snyder, Phys. Rev. 72, 68–71 (1947) ADSMATHCrossRefGoogle Scholar
  3. 3.
    C.N. Yang, Phys. Rev. 72, 874 (1947) ADSMATHCrossRefGoogle Scholar
  4. 4.
    V.G. Kadyshevsky, Nucl. Phys. B 141, 477–496 (1978) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    V.G. Kadyshevsky, D.V. Fursaev, Theor. Math. Phys. 83, 474–481 (1990) CrossRefGoogle Scholar
  6. 6.
    M. Banai, Int. J. Theor. Phys. 23, 1043–1063 (1984) CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Das, J. Math. Phys. 7, 52–60 (1966) ADSCrossRefGoogle Scholar
  8. 8.
    D. Atkinson, M.B. Halpern, J. Math. Phys. 8, 373–387 (1967) ADSMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S.P. Gudder, SIAM J. Appl. Math. 16, 1011–1019 (1968) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Finkelstein, Phys. Rev. D 9, 2219–2231 (1974) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Dineykhan, K. Namsrai, Int. J. Theor. Phys. 24, 1197–1215 (1985) CrossRefMathSciNetGoogle Scholar
  12. 12.
    T.D. Lee, Phys. Lett. B 122, 217–220 (1983) ADSCrossRefGoogle Scholar
  13. 13.
    E. Prugovecki, Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1983) Google Scholar
  14. 14.
    D.I. Blokhintsev, Theor. Math. Phys. 37, 933–937 (1978) CrossRefGoogle Scholar
  15. 15.
    A. Schild, Phys. Rev. 73, 414–415 (1948) ADSMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Veneziano, CERN Preprint TH 5581/89 Google Scholar
  17. 17.
    G. ’t Hooft, in Themes in Contemporary Physics, vol. II, ed. by S. Deser, R.J. Finkelstein (World Scientific, Singapore, 1990), p. 77 Google Scholar
  18. 18.
    J.C. Jackson, J. Phys. A, Math. Gen. 10, 2115–2122 (1977) ADSCrossRefGoogle Scholar
  19. 19.
    J. Madore, Ann. Phys. 219, 187–198 (1992) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Maggiore, Phys. Lett. B 319, 83–86 (1993) ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Kempf, G. Mangano, Phys. Rev. D 55, 7909–7920 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    E. Witten, Nucl. Phys. B 268, 253–294 (1986) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    N. Seiberg, E. Witten, J. High Energy Phys. 09, 032 (1999) ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187–220 (1995) ADSMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    M. Dubois-Violette, R. Kerner, J. Madore, J. Math. Phys. 39, 730–738 (1998) ADSMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    R. Vilela Mendes, J. Phys. A, Math. Gen. 27, 8091–8104 (1994) ADSMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. Vilela Mendes, J. Math. Phys. 41, 156–186 (2000) ADSMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Andronov, L. Pontryagin, Dokl. Akad. Nauk SSSR 14, 247 (1937) Google Scholar
  29. 29.
    S. Smale, Am. J. Math. 88, 491 (1966) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. Smale, Bull. Am. Math. Soc. 73, 747 (1967) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Flato, Czechoslov. J. Phys. 32, 472 (1982) ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    L.D. Faddeev, Asia-Pac. Phys. News 3, 21 (1988) and in Frontiers in Physics, High Technology and Mathematics, ed. by Cerdeira and Lundqvist (World Scientific, Singapore, 1989), pp. 238–246 Google Scholar
  33. 33.
    I.E. Segal, Duke Math. J. 18, 221–265 (1951) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    D.R. Finkelstein, Int. J. Theor. Phys. 45, 1399–1429 (2006) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    A.A. Galiautdinov, D.R. Finkelstein, J. Math. Phys. 43, 4741–4752 (2002) ADSMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    C. Chryssomalakos, E. Okon, Int. J. Mod. Phys. D 13, 2003–2034 (2004) ADSMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    D.V. Ahluwalia-Khalilova, Int. J. Mod. Phys. 14, 2151–2165 (2005) ADSMATHGoogle Scholar
  38. 38.
    D.V. Ahluwalia-Khalilova, Class. Quantum Gravity 22, 1433–1450 (2005) ADSMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    R. Vilela Mendes, Phys. Lett. A 376, 1823–1826 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    R. Vilela Mendes, Phys. Lett. A 210, 232–240 (1996) ADSMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    E. Carlen, R. Vilela Mendes, Phys. Lett. A 290, 109–114 (2001) ADSMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    R. Vilela Mendes, Eur. J. Phys. C 42, 445–452 (2005) ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    V. Dzhunushaliev, R. Myrzakulov, Int. J. Mod. Phys. D 16, 755–761 (2007) ADSMATHCrossRefGoogle Scholar
  44. 44.
    G.A. Goldin, S. Sarkar, J. Phys. A, Math. Gen. 39, 2757–2772 (2006) ADSMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    I. Hinchliffe, N. Kersting, Y.L. Ma, Int. J. Mod. Phys. A 2, 179–204 (2004) ADSCrossRefMathSciNetGoogle Scholar
  46. 46.
    K. Greisen, Phys. Rev. Lett. 16, 748–750 (1966) ADSCrossRefGoogle Scholar
  47. 47.
    G.T. Zatsepin, V.A. Kuz’min, JETP Lett. 4, 78–80 (1966) ADSGoogle Scholar
  48. 48.
    P. Caldirola, Lett. Nuovo Cimento 16, 151–155 (1976) CrossRefMathSciNetGoogle Scholar
  49. 49.
    R. Ehrlich, Phys. Rev. D 13, 50–55 (1976) ADSCrossRefGoogle Scholar
  50. 50.
    R. Ehrlich, Phys. Rev. D 15, 929–930 (1977) ADSCrossRefGoogle Scholar
  51. 51.
    C.E. Carlson, C.D. Carone, Phys. Rev. D 66, 075001 (2002) ADSCrossRefGoogle Scholar
  52. 52.
    F. Briolle, V.I. Man’ko, B. Ricaud, R. Vilela Mendes, J. Russ. Laser Res. 33, 103–121 (2012) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.CMAFInstituto para a Investigação InterdisciplinarLisboaPortugal
  2. 2.IPFN – EURATOM/IST AssociationInstituto Superior TécnicoLisboaPortugal

Personalised recommendations