2PI effective action and evolution equations of \(\mathcal{N} = 4\) super Yang–Mills

Regular Article - Theoretical Physics

Abstract

We employ nPI effective action techniques to study \(\mathcal{N}=4\) super Yang–Mills, and write down the 2PI effective action of the theory to two-loop order in the symmetric phase. We also supply the evolution equations of two-point correlators within the theory.

Keywords

Gauge Theory Ghost Effective Action Transport Coefficient Black Hole Formation 

Notes

Acknowledgements

We would like to thank K. Skenderis and M. Taylor for initially suggesting this problem and for many useful discussions. We would also like to thank J. Smit for discussions. This work is part of a research program which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek’ (NWO). J.S. and M.S. acknowledge support via the NWO Vici grant of K. Skenderis.

References

  1. 1.
    P.M. Chesler, L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 102, 211601 (2009). arXiv:0812.2053 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200 MathSciNetADSMATHGoogle Scholar
  3. 3.
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). hep-th/9905111 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    E. D’Hoker, D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence. hep-th/0201253
  5. 5.
    N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the simplest quantum field theory? J. High Energy Phys. 09, 016 (2010). arXiv:0808.1446 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    G. Festuccia, H. Liu, The arrow of time, black holes, and quantum mixing of large N Yang–Mills theories. J. High Energy Phys. 0712, 027 (2007). hep-th/0611098 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J.M. Luttinger, J.C. Ward, Ground-state energy of a many-fermion system II. Phys. Rev. 118, 1417 (1960) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    G. Baym, Self-consistent approximations in many-body systems. Phys. Rev. 127, 1391 (1962) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Effective action for composite operators. Phys. Rev. D 10, 2428 (1974) ADSMATHCrossRefGoogle Scholar
  10. 10.
    A. Arrizabalaga, J. Smit, Gauge-fixing dependence of phi-derivable approximations. Phys. Rev. D 66, 065014 (2002). hep-ph/0207044 ADSCrossRefGoogle Scholar
  11. 11.
    J. Berges, nPI effective action techniques for gauge theories. Phys. Rev. D 70, 105010 (2004). hep-ph/0401172 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    E. Calzetta, B.L. Hu, Nonequilibrium quantum fields: closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 37, 2878 (1988) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Self-consistent approximations to non-equilibrium many-body theory. Nucl. Phys. A 657, 413–445 (1999). hep-ph/9807351 ADSCrossRefGoogle Scholar
  14. 14.
    J. Berges, J. Cox, Thermalization of quantum fields from time-reversal invariant evolution equations. Phys. Lett. B 517, 369–374 (2001). hep-ph/0006160 ADSMATHCrossRefGoogle Scholar
  15. 15.
    G. Aarts, J. Berges, Nonequilibrium time evolution of the spectral function in quantum field theory. Phys. Rev. D 64, 105010 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    J. Berges, Controlled nonperturbative dynamics of quantum fields out of equilibrium. Nucl. Phys. A 699, 847 (2002) ADSMATHCrossRefGoogle Scholar
  17. 17.
    G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Far-from-equilibrium dynamics with broken symmetries from the 2PI-1/N expansion. Phys. Rev. D 66, 045008 (2002). hep-ph/0201308 ADSCrossRefGoogle Scholar
  18. 18.
    J. Berges, Sz. Borsányi, J. Serreau, Thermalization of fermionic quantum fields. Nucl. Phys. B 660, 52 (2003). hep-ph/0212404 ADSCrossRefGoogle Scholar
  19. 19.
    S. Juchem, W. Cassing, C. Greiner, Quantum dynamics and thermalization for out-of-equilibrium phi**4-theory. Phys. Rev. D 69, 025006 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    A. Arrizabalaga, J. Smit, A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation. J. High Energy Phys. 0410, 017 (2004). hep-ph/0409177 ADSCrossRefGoogle Scholar
  21. 21.
    A. Arrizabalaga, J. Smit, A. Tranberg, Equilibration in phi**4 theory in 3+1 dimensions. Phys. Rev. D 72, 025014 (2005). hep-ph/0503287 ADSCrossRefGoogle Scholar
  22. 22.
    J. Berges, Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3–62 (2005). hep-ph/0409233 ADSCrossRefGoogle Scholar
  23. 23.
    G. Aarts, J.M. Martinez Resco, Transport coefficients from the 2PI effective action. Phys. Rev. D 68, 085009 (2003). hep-ph/0303216 ADSCrossRefGoogle Scholar
  24. 24.
    G. Aarts, J.M. Martinez Resco, Shear viscosity in the O(N) model. J. High Energy Phys. 0402, 061 (2004). hep-ph/0402192 ADSCrossRefGoogle Scholar
  25. 25.
    G. Aarts, J.M. Martinez Resco, Transport coefficients in large N f gauge theories with massive fermions. J. High Energy Phys. 0503, 074 (2005). hep-ph/0503161 ADSCrossRefGoogle Scholar
  26. 26.
    E. Calzetta, B. Hu, Nonequilibrium Quantum Field Theory (Cambridge University Press, Cambridge, 2008) MATHCrossRefGoogle Scholar
  27. 27.
    S.C. Huot, S. Jeon, G.D. Moore, Shear viscosity in weakly coupled \(\mathcal{N}=4\) super Yang–Mills theory compared to QCD. Phys. Rev. Lett. 98, 172303 (2007). hep-ph/0608062 ADSCrossRefGoogle Scholar
  28. 28.
    K. Skenderis, B.C. van Rees, Real-time gauge/gravity duality. Phys. Rev. Lett. 101, 081601 (2008). arXiv:0805.0150 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    K. Skenderis, B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples. arXiv:0812.2909 [hep-th]
  30. 30.
    B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions. Nucl. Phys. Proc. Suppl. (2009) 192–193:193–196. arXiv:0902.4010 [hep-th]
  31. 31.
    G.D. Moore, Transport coefficients at leading order: kinetic theory versus diagrams. hep-ph/0211281
  32. 32.
    M.E. Carrington, G. Kunstatter, H. Zakaret, 2PI effective action and gauge dependence identities. Eur. Phys. J. C 42, 253–259 (2005). hep-ph/0309084 ADSCrossRefGoogle Scholar
  33. 33.
    M.E. Carrington, E. Kovalchuk, QED electrical conductivity using the two-particle-irreducible effective action. Phys. Rev. D 76, 045019 (2007). arXiv:0705.0162 [hep-ph] ADSCrossRefGoogle Scholar
  34. 34.
    M.E. Carrington, E. Kovalchuk, Leading order QED electrical conductivity from the three-particle irreducible effective action. Phys. Rev. D 77, 025015 (2008). arXiv:0709.0706 [hep-ph] ADSCrossRefGoogle Scholar
  35. 35.
    U. Reinosa, J. Serreau, 2PI functional techniques for gauge theories: QED. Ann. Phys. 325, 969–1017 (2010). arXiv:0906.2881 [hep-ph] MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    M.E. Carrington, E. Kovalchuk, Leading order QCD shear viscosity from the three-particle irreducible effective action. arXiv:0906.1140 [hep-ph]
  37. 37.
    M.E. Carrington, Transport coefficients and nPI methods. arXiv:1110.1238 [hep-ph]
  38. 38.
    M.E. Carrington, E. Kovalchuk, Towards next-to-leading order transport coefficients from the four-particle irreducible effective action. Phys. Rev. D 81, 065017 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    P. Aurenche, F. Gelis, H. Zakaret, Landau–Pomeranchuk–Migdal effect in thermal field theory. Phys. Rev. D 62, 096012 (2000) ADSCrossRefGoogle Scholar
  40. 40.
    P. Aurenche, F. Gelis, H. Zakaret, R. Kobes, Bremsstrahlung and photon production in thermal QCD. Phys. Rev. D 58, 085003 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    P. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. hep-ph/0109064
  42. 42.
    P. Arnold, G.D. Moore, L.G. Yaffe, Photon and gluon emission in relativistic plasmas. hep-ph/0204343
  43. 43.
    P. Arnold, G.D. Moore, L.G. Yaffe, Effective kinetic theory for high temperature gauge theories. hep-ph/0209353

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations