Skip to main content
Log in

2PI effective action and evolution equations of \(\mathcal{N} = 4\) super Yang–Mills

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We employ nPI effective action techniques to study \(\mathcal{N}=4\) super Yang–Mills, and write down the 2PI effective action of the theory to two-loop order in the symmetric phase. We also supply the evolution equations of two-point correlators within the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.M. Chesler, L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 102, 211601 (2009). arXiv:0812.2053 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  2. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  3. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  4. E. D’Hoker, D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence. hep-th/0201253

  5. N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the simplest quantum field theory? J. High Energy Phys. 09, 016 (2010). arXiv:0808.1446 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Festuccia, H. Liu, The arrow of time, black holes, and quantum mixing of large N Yang–Mills theories. J. High Energy Phys. 0712, 027 (2007). hep-th/0611098

    Article  MathSciNet  ADS  Google Scholar 

  7. J.M. Luttinger, J.C. Ward, Ground-state energy of a many-fermion system II. Phys. Rev. 118, 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. Baym, Self-consistent approximations in many-body systems. Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J.M. Cornwall, R. Jackiw, E. Tomboulis, Effective action for composite operators. Phys. Rev. D 10, 2428 (1974)

    Article  ADS  MATH  Google Scholar 

  10. A. Arrizabalaga, J. Smit, Gauge-fixing dependence of phi-derivable approximations. Phys. Rev. D 66, 065014 (2002). hep-ph/0207044

    Article  ADS  Google Scholar 

  11. J. Berges, nPI effective action techniques for gauge theories. Phys. Rev. D 70, 105010 (2004). hep-ph/0401172

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Calzetta, B.L. Hu, Nonequilibrium quantum fields: closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 37, 2878 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  13. Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Self-consistent approximations to non-equilibrium many-body theory. Nucl. Phys. A 657, 413–445 (1999). hep-ph/9807351

    Article  ADS  Google Scholar 

  14. J. Berges, J. Cox, Thermalization of quantum fields from time-reversal invariant evolution equations. Phys. Lett. B 517, 369–374 (2001). hep-ph/0006160

    Article  ADS  MATH  Google Scholar 

  15. G. Aarts, J. Berges, Nonequilibrium time evolution of the spectral function in quantum field theory. Phys. Rev. D 64, 105010 (2001)

    Article  ADS  Google Scholar 

  16. J. Berges, Controlled nonperturbative dynamics of quantum fields out of equilibrium. Nucl. Phys. A 699, 847 (2002)

    Article  ADS  MATH  Google Scholar 

  17. G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Far-from-equilibrium dynamics with broken symmetries from the 2PI-1/N expansion. Phys. Rev. D 66, 045008 (2002). hep-ph/0201308

    Article  ADS  Google Scholar 

  18. J. Berges, Sz. Borsányi, J. Serreau, Thermalization of fermionic quantum fields. Nucl. Phys. B 660, 52 (2003). hep-ph/0212404

    Article  ADS  Google Scholar 

  19. S. Juchem, W. Cassing, C. Greiner, Quantum dynamics and thermalization for out-of-equilibrium phi**4-theory. Phys. Rev. D 69, 025006 (2004)

    Article  ADS  Google Scholar 

  20. A. Arrizabalaga, J. Smit, A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation. J. High Energy Phys. 0410, 017 (2004). hep-ph/0409177

    Article  ADS  Google Scholar 

  21. A. Arrizabalaga, J. Smit, A. Tranberg, Equilibration in phi**4 theory in 3+1 dimensions. Phys. Rev. D 72, 025014 (2005). hep-ph/0503287

    Article  ADS  Google Scholar 

  22. J. Berges, Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3–62 (2005). hep-ph/0409233

    Article  ADS  Google Scholar 

  23. G. Aarts, J.M. Martinez Resco, Transport coefficients from the 2PI effective action. Phys. Rev. D 68, 085009 (2003). hep-ph/0303216

    Article  ADS  Google Scholar 

  24. G. Aarts, J.M. Martinez Resco, Shear viscosity in the O(N) model. J. High Energy Phys. 0402, 061 (2004). hep-ph/0402192

    Article  ADS  Google Scholar 

  25. G. Aarts, J.M. Martinez Resco, Transport coefficients in large N f gauge theories with massive fermions. J. High Energy Phys. 0503, 074 (2005). hep-ph/0503161

    Article  ADS  Google Scholar 

  26. E. Calzetta, B. Hu, Nonequilibrium Quantum Field Theory (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  27. S.C. Huot, S. Jeon, G.D. Moore, Shear viscosity in weakly coupled \(\mathcal{N}=4\) super Yang–Mills theory compared to QCD. Phys. Rev. Lett. 98, 172303 (2007). hep-ph/0608062

    Article  ADS  Google Scholar 

  28. K. Skenderis, B.C. van Rees, Real-time gauge/gravity duality. Phys. Rev. Lett. 101, 081601 (2008). arXiv:0805.0150 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Skenderis, B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples. arXiv:0812.2909 [hep-th]

  30. B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions. Nucl. Phys. Proc. Suppl. (2009) 192–193:193–196. arXiv:0902.4010 [hep-th]

  31. G.D. Moore, Transport coefficients at leading order: kinetic theory versus diagrams. hep-ph/0211281

  32. M.E. Carrington, G. Kunstatter, H. Zakaret, 2PI effective action and gauge dependence identities. Eur. Phys. J. C 42, 253–259 (2005). hep-ph/0309084

    Article  ADS  Google Scholar 

  33. M.E. Carrington, E. Kovalchuk, QED electrical conductivity using the two-particle-irreducible effective action. Phys. Rev. D 76, 045019 (2007). arXiv:0705.0162 [hep-ph]

    Article  ADS  Google Scholar 

  34. M.E. Carrington, E. Kovalchuk, Leading order QED electrical conductivity from the three-particle irreducible effective action. Phys. Rev. D 77, 025015 (2008). arXiv:0709.0706 [hep-ph]

    Article  ADS  Google Scholar 

  35. U. Reinosa, J. Serreau, 2PI functional techniques for gauge theories: QED. Ann. Phys. 325, 969–1017 (2010). arXiv:0906.2881 [hep-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. M.E. Carrington, E. Kovalchuk, Leading order QCD shear viscosity from the three-particle irreducible effective action. arXiv:0906.1140 [hep-ph]

  37. M.E. Carrington, Transport coefficients and nPI methods. arXiv:1110.1238 [hep-ph]

  38. M.E. Carrington, E. Kovalchuk, Towards next-to-leading order transport coefficients from the four-particle irreducible effective action. Phys. Rev. D 81, 065017 (2010)

    Article  ADS  Google Scholar 

  39. P. Aurenche, F. Gelis, H. Zakaret, Landau–Pomeranchuk–Migdal effect in thermal field theory. Phys. Rev. D 62, 096012 (2000)

    Article  ADS  Google Scholar 

  40. P. Aurenche, F. Gelis, H. Zakaret, R. Kobes, Bremsstrahlung and photon production in thermal QCD. Phys. Rev. D 58, 085003 (1998)

    Article  ADS  Google Scholar 

  41. P. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. hep-ph/0109064

  42. P. Arnold, G.D. Moore, L.G. Yaffe, Photon and gluon emission in relativistic plasmas. hep-ph/0204343

  43. P. Arnold, G.D. Moore, L.G. Yaffe, Effective kinetic theory for high temperature gauge theories. hep-ph/0209353

Download references

Acknowledgements

We would like to thank K. Skenderis and M. Taylor for initially suggesting this problem and for many useful discussions. We would also like to thank J. Smit for discussions. This work is part of a research program which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek’ (NWO). J.S. and M.S. acknowledge support via the NWO Vici grant of K. Skenderis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Smolic.

Appendix

Appendix

The corrections to the gluon propagator in \(\mathcal{N}=4\) SYM are given by the six diagrams in Fig. 4. Thus, we have

(A.1)
(A.2)

Fermion propagator corrections are shown in Fig. 5 and yield

(A.3)
(A.4)

Finally, the single ghost propagator correction is given in Fig. 6, with

(A.5)
(A.6)
Fig. 4
figure 4

Corrections to gluon propagator

Fig. 5
figure 5

Corrections to fermion propagator

Fig. 6
figure 6

Correction to ghost propagator

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolic, J., Smolic, M. 2PI effective action and evolution equations of \(\mathcal{N} = 4\) super Yang–Mills. Eur. Phys. J. C 72, 2106 (2012). https://doi.org/10.1140/epjc/s10052-012-2106-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2106-y

Keywords

Navigation