Advertisement

Inclusive charmed-meson production at the CERN LHC

  • Bernd A. Kniehl
  • Gustav Kramer
  • Ingo Schienbein
  • Hubert Spiesberger
Regular Article - Theoretical Physics

Abstract

We present predictions for the inclusive production of D mesons at the CERN LHC in the general-mass variable-flavor-number scheme at next-to-leading order. Detailed numerical results are compared to data where available, or presented in a way to ease future comparisons with experimental results. We also point out that measurements at large rapidity have the potential to pin down models of intrinsic charm.

Keywords

Heavy Quark Charm Quark Error Band LHCb Collaboration Partonic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank our experimental colleagues from the LHC collaborations A. Dainese, P. Thompson, L. Gladilin, and M. Schmelling for discussions about the experimental results.

This work was supported in part by the German Federal Ministry for Education and Research BMBF through Grant No. 05 HT6GUA, by the German Research Foundation DFG through Grant No. KN 365/7–1, and by the Helmholtz Association HGF through Grant No. Ha 101.

References

  1. 1.
    D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 91, 241804 (2003). hep-ex/0307080 ADSCrossRefGoogle Scholar
  2. 2.
    B. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 1201, 128 (2012). arXiv:1111.1553 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    The ATLAS Collaboration, ATL-PHYS-PUB-2011-012; ATLAS-CONF-2011-017 Google Scholar
  4. 4.
    The LHCb Collaboration, LHCb-CONF-2010-013 Google Scholar
  5. 5.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 84, 094026 (2011). arXiv:1109.2472 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 112001 (2011). arXiv:1101.0131 [hep-ex] ADSCrossRefGoogle Scholar
  7. 7.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 252001 (2011). arXiv:1104.2892 [hep-ex] ADSCrossRefGoogle Scholar
  8. 8.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 84, 052008 (2011). arXiv:1106.4048 [hep-ex] ADSCrossRefGoogle Scholar
  9. 9.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 303, 607 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 335, 260(E) (1989) Google Scholar
  12. 12.
    W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    S. Frixione, M. Mangano, P. Nason, G. Ridolfi, Phys. Lett. B 348, 633 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    S. Frixione, P. Nason, G. Ridolfi, Nucl. Phys. B 545, 3 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    I. Bojak, M. Stratmann, Phys. Rev. D 67, 034010 (2003). arXiv:hep-ph/0112276 ADSCrossRefGoogle Scholar
  17. 17.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972). Yad. Fiz. 15, 781 (1972) Google Scholar
  18. 18.
    G. Altarelli, G. Parisi, Nucl. Phys. 126, 298 (1977) ADSCrossRefGoogle Scholar
  19. 19.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977). Zh. Eksp. Teor. Fiz. 73, 1216 (1977) ADSGoogle Scholar
  20. 20.
    M. Cacciari, M. Greco, Nucl. Phys. B 421, 530 (1994). arXiv:hep-ph/9311260 ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Phys. Lett. B 356, 539 (1995). arXiv:hep-ph/9505410 ADSCrossRefGoogle Scholar
  22. 22.
    M. Cacciari, M. Greco, B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Nucl. Phys. B 466, 173 (1996). arXiv:hep-ph/9512246 ADSCrossRefGoogle Scholar
  23. 23.
    J. Binnewies, B.A. Kniehl, G. Kramer, Z. Phys. C 76, 677 (1997). arXiv:hep-ph/9702408 CrossRefGoogle Scholar
  24. 24.
    B.A. Kniehl, G. Kramer, M. Spira, Z. Phys. C 76, 689 (1997). arXiv:hep-ph/9610267 CrossRefGoogle Scholar
  25. 25.
    J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 014014 (1998). arXiv:hep-ph/9712482 ADSCrossRefGoogle Scholar
  26. 26.
    J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 034016 (1998). arXiv:hep-ph/9802231 ADSCrossRefGoogle Scholar
  27. 27.
    B.A. Kniehl, G. Kramer, Phys. Rev. D 60, 014006 (1999). arXiv:hep-ph/9901348 ADSCrossRefGoogle Scholar
  28. 28.
    B.A. Kniehl, in Proceedings of the 14th Topical Conference on Hadron Collider Physics: Hadron Collider Physics 2002, ed. by M. Erdmann, Th. Müller, Karlsruhe, Germany 2002 (Springer, Berlin, 2003), p. 161. arXiv:hep-ph/0211008 Google Scholar
  29. 29.
    B.A. Kniehl, G. Kramer, Phys. Rev. D 71, 094013 (2005). arXiv:hep-ph/0504058 ADSCrossRefGoogle Scholar
  30. 30.
    B.A. Kniehl, G. Kramer, Phys. Rev. D 74, 037502 (2006). arXiv:hep-ph/0607306 ADSCrossRefGoogle Scholar
  31. 31.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 71, 014018 (2005). arXiv:hep-ph/0410289 ADSCrossRefGoogle Scholar
  32. 32.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 41, 199 (2005). arXiv:hep-ph/0502194 ADSCrossRefGoogle Scholar
  33. 33.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, AIP Conf. Proc. 792, 867 (2005). arXiv:hep-ph/0507068 ADSCrossRefGoogle Scholar
  34. 34.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. Lett. 96, 012001 (2006). arXiv:hep-ph/0508129 ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 79, 094009 (2009). arXiv:0901.4130 [hep-ph] ADSCrossRefGoogle Scholar
  36. 36.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008). arXiv:0712.0481 [hep-ph] ADSMATHCrossRefGoogle Scholar
  37. 37.
    G. Kramer, H. Spiesberger, Eur. Phys. J. C 22, 289 (2001). arXiv:hep-ph/0109167 ADSCrossRefGoogle Scholar
  38. 38.
    G. Kramer, H. Spiesberger, Eur. Phys. J. C 28, 495 (2003). arXiv:hep-ph/0302081 ADSCrossRefGoogle Scholar
  39. 39.
    G. Kramer, H. Spiesberger, Eur. Phys. J. C 38, 309 (2004). arXiv:hep-ph/0311062 ADSCrossRefGoogle Scholar
  40. 40.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 62, 365 (2009). arXiv:0902.3166 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    G. Kramer, H. Spiesberger, Phys. Lett. B 679, 223 (2009). arXiv:0906.2533 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    B.A. Kniehl, G. Kramer, S.M. Moosavi Nejad, Nucl. Phys. B 862, 720 (2012). arXiv:1205.2528 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    W.-K. Tung, S. Kretzer, C. Schmidt, J. Phys. G 28, 983 (2002). arXiv:hep-ph/0110247 ADSCrossRefGoogle Scholar
  44. 44.
    M. Cacciari, M. Greco, P. Nason, J. High Energy Phys. 9805, 007 (1998). arXiv:hep-ph/9803400 ADSCrossRefGoogle Scholar
  45. 45.
    P.M. Nadolsky et al. (CTEQ Collaboration), Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    LHAPDF (The Les Houches Accord PDF Interface), http://projects.hepforge.org/lhapdf/pdfsets
  47. 47.
    M. Artuso et al. (CLEO Collaboration), Phys. Rev. D 70, 112001 (2004). arXiv:hep-ex/0402040 ADSCrossRefGoogle Scholar
  48. 48.
    R. Seuster et al. (Belle Collaboration), Phys. Rev. D 73, 032002 (2006). arXiv:hep-ex/0506068 ADSCrossRefGoogle Scholar
  49. 49.
    B.A. Kniehl, G. Kramer, Phys. Rev. D 74, 037502 (2006). arXiv:hep-ph/0607306 ADSCrossRefGoogle Scholar
  50. 50.
    G. Alexander et al. (OPAL Collaboration), Z. Phys. C 72, 1 (1996) ADSCrossRefGoogle Scholar
  51. 51.
    K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C 1, 439 (1998). arXiv:hep-ex/9708021 ADSCrossRefGoogle Scholar
  52. 52.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph] ADSCrossRefGoogle Scholar
  53. 53.
    R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo et al., Nucl. Phys. B 849, 296 (2011). arXiv:1101.1300 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    H1 and ZEUS Collaborations, ZEUS-prel-10-018 and H1prelim-10-142; ZEUS-prel-11-001 and H1prelim-11-034; ZEUS-prel-11-001 and H1prelim-11-034; ZEUS-prel-11-002 and H1prelim-11-042 Google Scholar
  55. 55.
    A.M. Cooper-Sarkar, in Proceedings of the 2011 Europhysics Conference on High Energy Physics (HEP-2011), arXiv:1112.2107 [hep-ph] (to be published)
  56. 56.
    A.M. Cooper-Sarkar, PoS(EPS-HEP2011)320. arXiv:1112.2107 [hep-ph]
  57. 57.
    J. Pumplin, H.L. Lai, W.K. Tung, Phys. Rev. D 75, 054029 (2007). arXiv:hep-ph/0701220 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • Bernd A. Kniehl
    • 1
  • Gustav Kramer
    • 1
  • Ingo Schienbein
    • 2
  • Hubert Spiesberger
    • 3
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Laboratoire de Physique Subatomique et de Cosmologie, Institut National Polytechnique de GrenobleUniversité Joseph Fourier Grenoble 1, CNRS/IN2P3GrenobleFrance
  3. 3.Institut für PhysikJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations