Skip to main content
Log in

Inclusive charmed-meson production at the CERN LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present predictions for the inclusive production of D mesons at the CERN LHC in the general-mass variable-flavor-number scheme at next-to-leading order. Detailed numerical results are compared to data where available, or presented in a way to ease future comparisons with experimental results. We also point out that measurements at large rapidity have the potential to pin down models of intrinsic charm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 91, 241804 (2003). hep-ex/0307080

    Article  ADS  Google Scholar 

  2. B. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 1201, 128 (2012). arXiv:1111.1553 [hep-ex]

    Article  ADS  Google Scholar 

  3. The ATLAS Collaboration, ATL-PHYS-PUB-2011-012; ATLAS-CONF-2011-017

  4. The LHCb Collaboration, LHCb-CONF-2010-013

  5. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 84, 094026 (2011). arXiv:1109.2472 [hep-ph]

    Article  ADS  Google Scholar 

  6. V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 112001 (2011). arXiv:1101.0131 [hep-ex]

    Article  ADS  Google Scholar 

  7. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 252001 (2011). arXiv:1104.2892 [hep-ex]

    Article  ADS  Google Scholar 

  8. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 84, 052008 (2011). arXiv:1106.4048 [hep-ex]

    Article  ADS  Google Scholar 

  9. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 303, 607 (1988)

    Article  ADS  Google Scholar 

  10. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49 (1989)

    Article  ADS  Google Scholar 

  11. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 335, 260(E) (1989)

    Google Scholar 

  12. W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, Phys. Rev. D 40, 54 (1989)

    Article  ADS  Google Scholar 

  13. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, Nucl. Phys. B 351, 507 (1991)

    Article  ADS  Google Scholar 

  14. S. Frixione, M. Mangano, P. Nason, G. Ridolfi, Phys. Lett. B 348, 633 (1995)

    Article  ADS  Google Scholar 

  15. S. Frixione, P. Nason, G. Ridolfi, Nucl. Phys. B 545, 3 (1995)

    Article  ADS  Google Scholar 

  16. I. Bojak, M. Stratmann, Phys. Rev. D 67, 034010 (2003). arXiv:hep-ph/0112276

    Article  ADS  Google Scholar 

  17. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972). Yad. Fiz. 15, 781 (1972)

    Google Scholar 

  18. G. Altarelli, G. Parisi, Nucl. Phys. 126, 298 (1977)

    Article  ADS  Google Scholar 

  19. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977). Zh. Eksp. Teor. Fiz. 73, 1216 (1977)

    ADS  Google Scholar 

  20. M. Cacciari, M. Greco, Nucl. Phys. B 421, 530 (1994). arXiv:hep-ph/9311260

    Article  ADS  Google Scholar 

  21. B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Phys. Lett. B 356, 539 (1995). arXiv:hep-ph/9505410

    Article  ADS  Google Scholar 

  22. M. Cacciari, M. Greco, B.A. Kniehl, M. Krämer, G. Kramer, M. Spira, Nucl. Phys. B 466, 173 (1996). arXiv:hep-ph/9512246

    Article  ADS  Google Scholar 

  23. J. Binnewies, B.A. Kniehl, G. Kramer, Z. Phys. C 76, 677 (1997). arXiv:hep-ph/9702408

    Article  Google Scholar 

  24. B.A. Kniehl, G. Kramer, M. Spira, Z. Phys. C 76, 689 (1997). arXiv:hep-ph/9610267

    Article  Google Scholar 

  25. J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 014014 (1998). arXiv:hep-ph/9712482

    Article  ADS  Google Scholar 

  26. J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 034016 (1998). arXiv:hep-ph/9802231

    Article  ADS  Google Scholar 

  27. B.A. Kniehl, G. Kramer, Phys. Rev. D 60, 014006 (1999). arXiv:hep-ph/9901348

    Article  ADS  Google Scholar 

  28. B.A. Kniehl, in Proceedings of the 14th Topical Conference on Hadron Collider Physics: Hadron Collider Physics 2002, ed. by M. Erdmann, Th. Müller, Karlsruhe, Germany 2002 (Springer, Berlin, 2003), p. 161. arXiv:hep-ph/0211008

    Google Scholar 

  29. B.A. Kniehl, G. Kramer, Phys. Rev. D 71, 094013 (2005). arXiv:hep-ph/0504058

    Article  ADS  Google Scholar 

  30. B.A. Kniehl, G. Kramer, Phys. Rev. D 74, 037502 (2006). arXiv:hep-ph/0607306

    Article  ADS  Google Scholar 

  31. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 71, 014018 (2005). arXiv:hep-ph/0410289

    Article  ADS  Google Scholar 

  32. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 41, 199 (2005). arXiv:hep-ph/0502194

    Article  ADS  Google Scholar 

  33. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, AIP Conf. Proc. 792, 867 (2005). arXiv:hep-ph/0507068

    Article  ADS  Google Scholar 

  34. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. Lett. 96, 012001 (2006). arXiv:hep-ph/0508129

    Article  ADS  Google Scholar 

  35. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 79, 094009 (2009). arXiv:0901.4130 [hep-ph]

    Article  ADS  Google Scholar 

  36. T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008). arXiv:0712.0481 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  37. G. Kramer, H. Spiesberger, Eur. Phys. J. C 22, 289 (2001). arXiv:hep-ph/0109167

    Article  ADS  Google Scholar 

  38. G. Kramer, H. Spiesberger, Eur. Phys. J. C 28, 495 (2003). arXiv:hep-ph/0302081

    Article  ADS  Google Scholar 

  39. G. Kramer, H. Spiesberger, Eur. Phys. J. C 38, 309 (2004). arXiv:hep-ph/0311062

    Article  ADS  Google Scholar 

  40. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 62, 365 (2009). arXiv:0902.3166 [hep-ph]

    Article  ADS  Google Scholar 

  41. G. Kramer, H. Spiesberger, Phys. Lett. B 679, 223 (2009). arXiv:0906.2533 [hep-ph]

    Article  ADS  Google Scholar 

  42. B.A. Kniehl, G. Kramer, S.M. Moosavi Nejad, Nucl. Phys. B 862, 720 (2012). arXiv:1205.2528 [hep-ph]

    Article  ADS  Google Scholar 

  43. W.-K. Tung, S. Kretzer, C. Schmidt, J. Phys. G 28, 983 (2002). arXiv:hep-ph/0110247

    Article  ADS  Google Scholar 

  44. M. Cacciari, M. Greco, P. Nason, J. High Energy Phys. 9805, 007 (1998). arXiv:hep-ph/9803400

    Article  ADS  Google Scholar 

  45. P.M. Nadolsky et al. (CTEQ Collaboration), Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph]

    Article  ADS  Google Scholar 

  46. LHAPDF (The Les Houches Accord PDF Interface), http://projects.hepforge.org/lhapdf/pdfsets

  47. M. Artuso et al. (CLEO Collaboration), Phys. Rev. D 70, 112001 (2004). arXiv:hep-ex/0402040

    Article  ADS  Google Scholar 

  48. R. Seuster et al. (Belle Collaboration), Phys. Rev. D 73, 032002 (2006). arXiv:hep-ex/0506068

    Article  ADS  Google Scholar 

  49. B.A. Kniehl, G. Kramer, Phys. Rev. D 74, 037502 (2006). arXiv:hep-ph/0607306

    Article  ADS  Google Scholar 

  50. G. Alexander et al. (OPAL Collaboration), Z. Phys. C 72, 1 (1996)

    Article  ADS  Google Scholar 

  51. K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C 1, 439 (1998). arXiv:hep-ex/9708021

    Article  ADS  Google Scholar 

  52. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  53. R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo et al., Nucl. Phys. B 849, 296 (2011). arXiv:1101.1300 [hep-ph]

    Article  ADS  Google Scholar 

  54. H1 and ZEUS Collaborations, ZEUS-prel-10-018 and H1prelim-10-142; ZEUS-prel-11-001 and H1prelim-11-034; ZEUS-prel-11-001 and H1prelim-11-034; ZEUS-prel-11-002 and H1prelim-11-042

  55. A.M. Cooper-Sarkar, in Proceedings of the 2011 Europhysics Conference on High Energy Physics (HEP-2011), arXiv:1112.2107 [hep-ph] (to be published)

  56. A.M. Cooper-Sarkar, PoS(EPS-HEP2011)320. arXiv:1112.2107 [hep-ph]

  57. J. Pumplin, H.L. Lai, W.K. Tung, Phys. Rev. D 75, 054029 (2007). arXiv:hep-ph/0701220

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank our experimental colleagues from the LHC collaborations A. Dainese, P. Thompson, L. Gladilin, and M. Schmelling for discussions about the experimental results.

This work was supported in part by the German Federal Ministry for Education and Research BMBF through Grant No. 05 HT6GUA, by the German Research Foundation DFG through Grant No. KN 365/7–1, and by the Helmholtz Association HGF through Grant No. Ha 101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd A. Kniehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kniehl, B.A., Kramer, G., Schienbein, I. et al. Inclusive charmed-meson production at the CERN LHC. Eur. Phys. J. C 72, 2082 (2012). https://doi.org/10.1140/epjc/s10052-012-2082-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2082-2

Keywords

Navigation