Triviality of the Aharonov–Bohm interaction in a spatially confining vacuum

Regular Article - Theoretical Physics

Abstract

This paper explores long-range interactions between magnetically charged excitations of the vacuum of the dual Landau–Ginzburg theory (DLGT) and the dual Abrikosov vortices present in the same vacuum. We show that, in the London limit of DLGT, the corresponding Aharonov–Bohm-type interactions possess such a coupling that the interactions reduce to a trivial factor of e2πi×(integer). The same analysis is done in the SU(N c)-inspired [U(1)]\(^{N_{\mathrm{c}}-1}\)-invariant DLGT, as well as in DLGT extended by a Chern–Simons term. It is furthermore explicitly shown that the Chern–Simons term leads to the appearance of knotted dual Abrikosov vortices.

Keywords

Wilson Loop Duality Transformation Spatial Confinement Abrikosov Vortex Maximal Abelian Subgroup 

Notes

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT, program Ciência-2008) and by the Center for Physics of Fundamental Interactions (CFIF) at Instituto Superior Técnico (IST), Lisbon. The author is grateful to the whole staff of the Department of Physics of IST for their cordial hospitality.

References

  1. 1.
    S. Mandelstam, Phys. Lett. B 53, 476 (1975) CrossRefADSGoogle Scholar
  2. 2.
    G. ’t Hooft, Nucl. Phys. B 190, 455 (1981) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    H. Kleinert, Phys. Lett. B 246, 127 (1990) MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    H. Kleinert, Phys. Lett. B 293, 168 (1992) MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    H. Kleinert, Gauge Fields in Condensed Matter, vol. 1 (World Scientific, Singapore, 1989) MATHGoogle Scholar
  6. 6.
    M. Kiometzis, H. Kleinert, A.M.J. Schakel, Fortschr. Phys. 43, 697 (1995) CrossRefGoogle Scholar
  7. 7.
    A. Di Giacomo et al., Phys. Rev. D 61, 034503 (2000) CrossRefADSGoogle Scholar
  8. 8.
    A. Di Giacomo et al., Phys. Rev. D 61, 034504 (2000) CrossRefADSGoogle Scholar
  9. 9.
    G.S. Bali et al., Phys. Rev. Lett. 71, 3059 (1993) CrossRefADSGoogle Scholar
  10. 10.
    G. Boyd et al., Nucl. Phys. B 469, 419 (1996) CrossRefADSGoogle Scholar
  11. 11.
    N.O. Agasian, Phys. Lett. B 562, 257 (2003) MATHCrossRefADSGoogle Scholar
  12. 12.
    A. Di Giacomo, E. Meggiolaro, H. Panagopoulos, Nucl. Phys. B 483, 371 (1997) CrossRefADSGoogle Scholar
  13. 13.
    M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Rev. D 67, 114504 (2003) CrossRefADSGoogle Scholar
  14. 14.
    D. Antonov, D. Ebert, Eur. Phys. J. C 8, 343 (1999) MathSciNetADSGoogle Scholar
  15. 15.
    D. Antonov, D. Ebert, Phys. Lett. B 444, 208 (1998) CrossRefADSGoogle Scholar
  16. 16.
    A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957) Google Scholar
  17. 17.
    E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, 1991) (Chap. 7 and Refs. therein) MATHGoogle Scholar
  18. 18.
    D. Antonov, J. High Energy Phys. 07, 055 (2000) MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    D. Antonov, Phys. Lett. B 475, 81 (2000) CrossRefADSGoogle Scholar
  20. 20.
    D. Antonov, Phys. Lett. B 543, 53 (2002) MATHCrossRefADSGoogle Scholar
  21. 21.
    D. Antonov, L. Del Debbio, D. Ebert, J. High Energy Phys. 12, 022 (2004) CrossRefADSGoogle Scholar
  22. 22.
    R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974) MATHGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Departamento de Física and Centro de Física das Interacções Fundamentais, Instituto Superior TécnicoUT LisboaLisbonPortugal

Personalised recommendations