Advertisement

Observability of light charged Higgs decay to muon in top quark pair events at LHC

Regular Article - Theoretical Physics

Abstract

In this paper the charged Higgs signal through the decay to a pair of muon and neutrino (H ±μν) is analyzed. The analysis attempts to estimate the amount of muonic signal of the charged Higgs at LHC at a center of mass energy of 14 TeV. The signal process is the top quark pair production with one of the top quarks decaying to a charged Higgs (non SM anomalous top decay) and the other decaying to a W boson which is assumed to decay hadronically to two light jets. Due to the small branching ratio of charged Higgs decay to muon, results are quoted for data corresponding to an integrated luminosity of 300 fb−1 which is expected to be collected at the LHC high luminosity regime. It is shown that a signal significance close to 5σ down to below 1σ is achievable for a charged Higgs mass in the range 80 GeV<m(H ±)<150 GeV taking the top quark pair production with both top quarks decaying to W bosons as the main irreducible background.

Keywords

Higgs Boson Large Hadron Collider Parton Distribution Function Charged Higgs Boson Large Hadron Collider Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.W. Higgs, Phys. Lett. 12, 132 (1964) ADSGoogle Scholar
  2. 2.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    G. Guralnik, C. Hagen, T. Kibble, Phys. Rev. Lett. 13, 585 (1964) CrossRefADSGoogle Scholar
  5. 5.
    P.W. Higgs, Phys. Rev. 145, 1156 (1966) MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    The CMS Collaboration, CMS PAS HIG-11-032 Google Scholar
  7. 7.
    The ATLAS Collaboration, ATLAS-CONF-2011-163 Google Scholar
  8. 8.
    The TEVNPH Working Group, arXiv:1103.3233v2 [hep-ex]
  9. 9.
    G.L. Kane (ed.), Perspectives on Supersymmetry (World Scientific, Singapore, 1998), p. 1 MATHGoogle Scholar
  10. 10.
    The ATLAS Collaboration, CERN-OPEN-2008-020, arXiv:0901.0512
  11. 11.
    CMS Physics Technical Design Report, vol. II: Physics Performance, J. Phys. G: Nucl. Part. Phys. 34, 995-1579 (2007) Google Scholar
  12. 12.
    The CMS Collaboration, Phys. Rev. Lett. 106, 231801 (2011) CrossRefGoogle Scholar
  13. 13.
    The ALEPH, DELPHI, OPAL and L3 Collaboration, The LEP Higgs Working Group, hep-ex/0107030
  14. 14.
    The CDF and D0 Collaborations, the Tevatron New Physics Higgs Working Group, arXiv:1003.3363
  15. 15.
    M. Finkemeier, E. Mirkes, AIP Conf. Proc. 349, 119 (1996). hep-ph/9508312 CrossRefGoogle Scholar
  16. 16.
    S. Raychaudhuri, D.P. Roy, Phys. Rev. D 52, 1556 (1995). hep-ph/9503251 CrossRefADSGoogle Scholar
  17. 17.
    S. Raychaudhuri, D.P. Roy, Phys. Rev. D 53, 4902 (1996). hep-ph/9507388 CrossRefADSGoogle Scholar
  18. 18.
    D.P. Roy, Phys. Lett. B 459, 607 (1999). hep-ph/9905542 CrossRefADSGoogle Scholar
  19. 19.
    ALEPH, DELPHI, L3, OPAL Collaborations, The LEP working group for the Higgs boson searches, hep-ex/0107031
  20. 20.
    The D0 Collaboration, Phys. Rev. Lett. 82, 4975 (1999) CrossRefGoogle Scholar
  21. 21.
    The D0 Collaboration, D0 Note 5715-CONF Google Scholar
  22. 22.
    The D0 Collaboration, arXiv:0906.5326 [hep-ex]
  23. 23.
    The D0 Collaboration, Phys. Rev. D 80, 071102(R) (2009) Google Scholar
  24. 24.
    The CDF Collaboration, Phys. Rev. Lett. 96, 042003 (2006) CrossRefGoogle Scholar
  25. 25.
    G. Yu (CDF Collaboration), AIP Conf. Proc. 1078, 198 (2008) CrossRefADSGoogle Scholar
  26. 26.
    The CDF Collaboration, arXiv:0907.1269 [hep-ex]
  27. 27.
    The CDF Collaboration, Phys. Rev. Lett. 103, 101803 (2009) CrossRefGoogle Scholar
  28. 28.
    P. Gutierrez (CDF and D0 Collaborations), FERMILAB-CONF-10-540-E Google Scholar
  29. 29.
    M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007). hep-ph/0609232 CrossRefADSGoogle Scholar
  30. 30.
    D. Bowser-Chao, K. Cheung, W.-Y. Keung, Phys. Rev. D 59, 115006 (1999) CrossRefADSGoogle Scholar
  31. 31.
    T. Plehn, Phys. Rev. D 67, 014018 (2003) CrossRefADSGoogle Scholar
  32. 32.
    E.L. Berger, T. Han, J. Jiang, T. Plehn, Phys. Rev. D 71, 115012 (2005) CrossRefADSGoogle Scholar
  33. 33.
    M. Baarmand, M. Hashemi, A. Nikitenko, J. Phys. G: Nucl. Part. Phys. 32, N21 (2006) CrossRefGoogle Scholar
  34. 34.
    R. Kinnunen, CMS NOTE 2006-100 Google Scholar
  35. 35.
    S. Lowette, J. D’Hondt, P. Vanlaer, CMS NOTE 2006-109 Google Scholar
  36. 36.
    F. Hubaut et al., arXiv:hep-ex/0508061
  37. 37.
    CMS Physics Technical Design Report, vol. I, CERN/LHCC 2006-001, Sect. 12.1.2 Google Scholar
  38. 38.
  39. 39.
  40. 40.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) CrossRefADSGoogle Scholar
  41. 41.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448 MATHCrossRefADSGoogle Scholar
  42. 42.
    PYTHIA 6.4 physics and manual, T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 05, 026 (2006) CrossRefADSGoogle Scholar
  43. 43.
    The ATLAS collaboration, ATLAS-CONF-2011-121 Google Scholar
  44. 44.
    F. Demartin et al., arXiv:1004.0962v1 [hep-ph]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Physics Department and Biruni ObservatoryShiraz UniversityShirazIran
  2. 2.Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations